[1]
Qian Bozhang, Li Guangwu, Research about Technologic And Envirmental Problems of Shale Gas Hydraulic Fracturing,J. Nature Gas and Petroleum. 31 (2013) 48-53.
Google Scholar
[2]
Li Qinghui, Chen Mian, Jin Yan, Wang Mingyuan, Jiang Hailong, Application of New Fracturing Technics in Shale Gas Exploitation, Special Oil & Gas Reserviors. 19 (2012) 1-7.
Google Scholar
[3]
Nie Haikuang, He Faqi, Bao Shujing, Special Geologic Characteristic and its Exploitary Countermeasures, Natural Gas Industry. 31 (2011) 111-116.
Google Scholar
[4]
Wang Haizhu, Shen Zhonghou, Li Gensheng, Fesibility Analysis on Shale Gas Exploitation with Supercritical CO2, Petroleum Drilling Techniques. 39 (2011) 30-35.
Google Scholar
[5]
Jianhang Xu, CO2 thickening agent for reduced CO2 mobility, Pittsburgh: University of Pittsburgh, (2003).
Google Scholar
[6]
Harris T V, Irani C A, Pretzer W R. Enhanced Oil Recovery Using CO2 Flooding, U.S. Patent, 4913235, (1990).
Google Scholar
[7]
Heller J P, Martin F D. Improvement of CO2 Flood Performance, New Mexico Petroleum Recovery Research Center Report, (1990).
Google Scholar
[8]
J R Combes , Z Guan, J M DeSimone. Homogeneous free radical polymerizations in supercritical CO2: 3. Telomerization of1, 1-Difluoroethylene in Supercritical CO2, Macromolecules. 27 (1994) 865-867.
DOI: 10.1021/ma00081a036
Google Scholar
[9]
Guan Z B. Homogeneous free radical polymerization in supercritical CO2: 2. Thermal Decomposition of 2, 2'-Azobis(isobutyronitri1e), Macromolecules. 26 (1993) 2663-2669.
DOI: 10.1021/ma00063a003
Google Scholar
[10]
J H Bae and C A Irani, A Laboratory Investigation of Viscosified CO2 Process: The thickened CO2 process utilizing a commercial silicon polymer and toluene as cosolvent is technically viable , SPE Advanced Technology Series. 1(1993)166-171.
DOI: 10.2118/20467-pa
Google Scholar
[11]
Williams L L, Rubin J B, Edwards H W. Calculation of solubility values for a range of pressure and temperature conditions, including the supercritical region, Industrial & Engineering Chemistry Research. 43 (2004) 4967- 4972.
DOI: 10.1021/ie0497543
Google Scholar
[12]
McClain J B, Betts D E, Canelas D A, et al., Characterization of polymers and Amphiphiles in supercritical CO2 using small angle neutron scattering and Viscometry, Spring meeting of the ACS, Division of Polymer Material, New Orleans La: Science and Engineering. 74(1996).
Google Scholar
[13]
Enick R M, Beckman E, Yazdi A, et al. Phase behavior of CO2-perfluoropolyether oil mixtures and CO2-perfluoropolyether chelating agent mixtures, Supercritical Fluids. 13 (1998) 121-126.
DOI: 10.1016/s0896-8446(98)00043-6
Google Scholar
[14]
Enick R M. A literature review of attempts to increase the viscosity of dense CO2, University of Pittsburgh Report, (1998).
Google Scholar
[15]
Jianhang Xu, CO2 thicking agent for reduced CO2 mobility, Pittsburgh: University of Pittsburgh, (2003).
Google Scholar
[16]
Huang Z, Shi C, Xu J, et al., Enhancement of the viscosity of CO2 using styrene/fluoroacrylate Copolymers, J. Macromolecules. 33 (2000) 5437- 5442.
DOI: 10.1021/ma992043+
Google Scholar
[17]
Jianhang Xu, Aron Wlaschin, R M Enick. Thickening CO2 with the fluoroacrylate-styrene copolymer. SPE71497, (2001).
Google Scholar
[18]
R E Terry, A Zaid, C Angelos, D L Whitman, Polymerization in Supercritical CO2 To Improve CO2/Oil Mobility Ratios. SPE 16270, (1987).
DOI: 10.2118/16270-ms
Google Scholar
[19]
G W Lancaster, C Barrientos, E Li, R C Greenhorn, High phase volume liquid CO2 fracturing fluids. CIM 87-38- 71, (1987).
Google Scholar
[20]
G W Lancaster, M Sinal, Liquid CO2 Fracturing: Advantages and Limitations, The Journal of Canadian Petroleum Technology. 26(1986)26-30.
DOI: 10.2118/87-05-01
Google Scholar
[21]
R M Enick, E J Beckman, Andrew Hamilton, Report: Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods. (2009).
DOI: 10.2172/968338
Google Scholar
[22]
Sarbu T, T Styranec, E J Beckman, Non-Fluorous Polymers with very High Solubility in Supercritical CO2 down to Low Pressures, Nature. 405(2000)165-168.
DOI: 10.1038/35012040
Google Scholar
[23]
R M Enick, D Olsen, et al., Mobility and Conformance Control for CO2 EOR via Thickeners, Foams and Gels—A Literature Review of 40 Years of Research and Pilot Tests. SPE154122, (2012).
DOI: 10.2118/154122-ms
Google Scholar
[24]
R M Enick, E J Beckman, Andrew Hamilton, Report: Novel CO2-Thickeners for Improved Mobility Control, (2001).
DOI: 10.2172/825007
Google Scholar
[25]
Shi C, Huang Z, Xu J, et al., The gelation of CO2: A sustainable route to the creation Of miscrocellular materials, Science. 19 (1999) 1540-1543.
Google Scholar
[26]
Paik I H, Tapriyal D, Enick R, Hamilton, A Fiber formation by highly CO2-soluble bis-ureas based on peracetylated carbonhydrate groups, Angewandte chemic international edition. 46(2007)3284-3287.
DOI: 10.1002/anie.200604844
Google Scholar
[27]
Gullapalli P, Tsau J S, Heller J P, Gelling behavior of 12 hydroxystearic acid in organic fluids and dense CO2. SPE 28979, (1995).
DOI: 10.2118/28979-ms
Google Scholar
[28]
Heller J P, Dandge D K, Card R J, Donaruma L G. Direct thickeners for mobility control of CO2 floods, Society of Petroleum Engineers Journal. 25(1985) 679-686.
DOI: 10.2118/11789-pa
Google Scholar
[29]
Dandge D K, Taylor C, Heller J P, Wilson K V, Brumley N, Associative Organotin Polymers. 2. Solution Properties of Symmetric Trialkyltin Fluorides, Journal of Macromolecular Science. 26(1989)1451-1464.
DOI: 10.1080/00222338908052062
Google Scholar
[30]
Heller J, Dandge D, Topical Viscosity Control for Light Hydrocarbon Displacing Fluids in Petroleum Recovery and in Fracturing Fluids for Well Stimulation, U.S. Patent: 4607696(1986).
Google Scholar
[31]
Heller J, Kovarik F, Improvement of CO2 Flood Performance, Petroleum Recovery Research Center Report, (1987).
Google Scholar
[32]
R M Enick, E J Beckman, Chunmei Shi, et al., Direct Thickeners for CO2. SPE59325, (2000).
Google Scholar
[33]
Chunmei Shi, Zhihua Huang, E J Beckman, et al., Semi-Fluorinated Trialkyltin Fluorides and Fluorinated Telechelic Ionomers as Viscosity-Enhancing Agents for CO2, Industrial & Engineering Chemistry Research. 40(2001)908-913.
DOI: 10.1021/ie0001321
Google Scholar
[34]
Liave F M, Chung F T, Burchfield T E, Use of entrainers in improving mobility control of supercritical CO2, SPE Reservoir Engineering. 5(1990)47-51.
DOI: 10.2118/17344-pa
Google Scholar
[35]
Trickett K, Xing D, Enick R, et al., Rod-like micelles thicken CO2, Langmuir. 26(2010)83-88.
DOI: 10.1021/la902128g
Google Scholar
[36]
Consani K A, R D Smith, Observations on the Solubility of Surfactants and Related Molecules in CO2 at 50°C, Journal of Supercritical Fluids. 3(1990)51-65.
Google Scholar
[37]
Hoefling T A, R M Enick, E J Beckman, Microemulsions in Near-Critical and Supercritical CO2, J. Phys. Chem. 95 (1991) 7127-7129.
DOI: 10.1021/j100172a006
Google Scholar
[38]
Newman D A, et al., Phase-Behavior of Fluoroether-Functional Amphiphiles in Supercritical CO2, Journal of Supercritical Fluids. 6 (1993) 205-210.
DOI: 10.1016/0896-8446(93)90028-v
Google Scholar
[39]
Desimone J M, Z Guan, and C S Elsbernd, Synthesis of Fluoropolymers in Supercritical CO2, Science. 257 (1992) 945-947.
DOI: 10.1126/science.257.5072.945
Google Scholar
[40]
Hoefling T A, et al., Effect of Structure on the Cloud-Point Curves of Silicone Based Amphiphiles in Supercritical CO2, Journal of Supercritical Fluids. 6 (1993) 165-171.
DOI: 10.1016/0896-8446(93)90015-p
Google Scholar
[41]
Hoefling T A, et al., Design and Synthesis of Highly CO2 Soluble Surfactants and Chelating-Agents, Fluid Phase Equilibria. 83 (1993) 203-212.
DOI: 10.1016/0378-3812(93)87023-t
Google Scholar
[42]
Heitz M P, et al., Water Core within Perfluopolyether-based Microemulsions formed in Supercritical CO2, J. Phys. Chem. B. 101(1997)6707.
Google Scholar
[43]
Harrison K , et al., Water-in-CO2 Microemulsions with a Fluorocarbon-Hydrocarbon Hybrid surfactant, Langmuir. 10(1994)3536-3541.
DOI: 10.1021/la00022a028
Google Scholar
[44]
Stephen Cummings, Dazun Xing, Robert Enick, et al., Design principles for supercritical CO2 viscosifiers, Soft Matter. 8 (2012) 7044-7055.
DOI: 10.1039/c2sm25735a
Google Scholar
[45]
Audrey Dupont, Julian Eastoe, Laura Martin, et al., Hybrid fluorocarbon hydrocarbon CO2-philic surfactants, Langmuir. 20 (2004) 9960-9967.
DOI: 10.1021/la0483820
Google Scholar
[46]
Fink R, E J Beckman, Phase Behavior of Siloxane-based Amphiphiles in Supercritical CO2, Journal of Supercritical Fluids. 18 (2000) 101-110.
DOI: 10.1016/s0896-8446(00)00052-8
Google Scholar
[47]
Psathas P A, et al., Water-in-CO2 Emulsions with Poly(dimethylsiloxane)-based Block Copolymer Ionomers. Industrial & Engineering Chemistry Research. 39 (2000) 2655-2664.
DOI: 10.1021/ie990779p
Google Scholar
[48]
R Fink, E J Beckman, R Valentine, et. al., Toward the development of CO2-philic, hydrocarbons. 1. Use of side-chain functionalization to lower the miscibility pressure of polydimethylsiloxanes in CO2, J. Phys. Chem.B. 103 (1999) 6441-6444.
DOI: 10.1021/jp990333m
Google Scholar
[49]
SRP da Rocha, J Dickson, D Cho, PJ Rossky, et al., Stubby surfactants for stabilization of water and CO2 emulsions: Trisiloxanes, Langmuir. 19 (2003)3114-3120.
DOI: 10.1021/la026608y
Google Scholar
[50]
Hutton B H, Pcrera J M, Gricser F, et a1., AOT reverse, micro-emulsions in SC-CO2—a further investigation, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 189 (2001) 177-181.
DOI: 10.1016/s0927-7757(01)00474-5
Google Scholar
[51]
Ji M, Chen X, Wai C M, Fulton J L J, Synthesizing and dispersing silver nanoparticles in A water-in-supercritical CO2 microemulsion, J. Am. Chem. Soc. 121 (1999) 2631- 2632.
DOI: 10.1021/ja9840403
Google Scholar
[52]
Eastoe J, Paul A, Nave S, et al., Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electro-optics, Journal of American Chemical Society 123 (2001) 988-989.
Google Scholar
[53]
Eastoe J, Dupont A, Steytler C D, et al., Micellization of economically viable surfactants in CO2, Journal of Colloid and Interface Science. 258 (2003) 367-373.
DOI: 10.1016/s0021-9797(02)00104-2
Google Scholar
[54]
Eastoe J, Gold S, Rogers S, et al. Designed CO2-philes stabilize water-in-CO2 microemulsions, J. Angewandte Chemie, International Edition. 45 (2006) 3675 -3677.
DOI: 10.1002/anie.200600397
Google Scholar
[55]
Ryoo W, Wobber S E, Johnston K P, Water-in-CO2 micromulsions with methylated branched hydrocarbon surfactants, Industrial & Engineering Chemistry Research. 42 (2003) 6348-6358.
DOI: 10.1021/ie0300427
Google Scholar
[56]
Liu J, Han B, Li G, et al., Investigation of nonionic surfactant Dynol-604 based microemulsion formed in Supercritical CO2. Langmuir. 17 (2001) 8040-8043.
DOI: 10.1021/la010743d
Google Scholar
[57]
Juncheng Liu, Buxing Han, Zhengwu Wang, et al., Solubility of Ls-36 and Ls-45 Surfactants in Supercritical CO2 and Loading Water in the CO2/Water/Surfactant Systems, Langmuir. 18 (2002) 3086-3089.
DOI: 10.1021/la011721u
Google Scholar