Research Progress of Thickening Agents for Supercritical CO2

Article Preview

Abstract:

Although supercritical CO2 fracturing has incomparable advantages compared to hydraulic fracturing as a new recreating technology of shale gas reservoir, the application of this technology has been limited by the low viscosity and weak carrying capacity of proppant. It’s critical to enhance the viscosity of supercritical CO2 by adding thickening agents. Thickening agents for supercritical CO2 that have been studied by researchers mainly contained polymers, small molecular compounds and surfactants. Thickening agents that match with CO2 are characterized by low cohesive energy density, low polarity, high free volume and Lewis base. It’s necessary to study the interaction between thickening agents and CO2 by molecular simulation to design inexpensive, green thickening agents which could increase the viscosity of supercritical CO2 remarkably under low concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1541-1548

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qian Bozhang, Li Guangwu, Research about Technologic And Envirmental Problems of Shale Gas Hydraulic Fracturing,J. Nature Gas and Petroleum. 31 (2013) 48-53.

Google Scholar

[2] Li Qinghui, Chen Mian, Jin Yan, Wang Mingyuan, Jiang Hailong, Application of New Fracturing Technics in Shale Gas Exploitation, Special Oil & Gas Reserviors. 19 (2012) 1-7.

Google Scholar

[3] Nie Haikuang, He Faqi, Bao Shujing, Special Geologic Characteristic and its Exploitary Countermeasures, Natural Gas Industry. 31 (2011) 111-116.

Google Scholar

[4] Wang Haizhu, Shen Zhonghou, Li Gensheng, Fesibility Analysis on Shale Gas Exploitation with Supercritical CO2, Petroleum Drilling Techniques. 39 (2011) 30-35.

Google Scholar

[5] Jianhang Xu, CO2 thickening agent for reduced CO2 mobility, Pittsburgh: University of Pittsburgh, (2003).

Google Scholar

[6] Harris T V, Irani C A, Pretzer W R. Enhanced Oil Recovery Using CO2 Flooding, U.S. Patent, 4913235, (1990).

Google Scholar

[7] Heller J P, Martin F D. Improvement of CO2 Flood Performance, New Mexico Petroleum Recovery Research Center Report, (1990).

Google Scholar

[8] J R Combes , Z Guan, J M DeSimone. Homogeneous free radical polymerizations in supercritical CO2: 3. Telomerization of1, 1-Difluoroethylene in Supercritical CO2, Macromolecules. 27 (1994) 865-867.

DOI: 10.1021/ma00081a036

Google Scholar

[9] Guan Z B. Homogeneous free radical polymerization in supercritical CO2: 2. Thermal Decomposition of 2, 2'-Azobis(isobutyronitri1e), Macromolecules. 26 (1993) 2663-2669.

DOI: 10.1021/ma00063a003

Google Scholar

[10] J H Bae and C A Irani, A Laboratory Investigation of Viscosified CO2 Process: The thickened CO2 process utilizing a commercial silicon polymer and toluene as cosolvent is technically viable , SPE Advanced Technology Series. 1(1993)166-171.

DOI: 10.2118/20467-pa

Google Scholar

[11] Williams L L, Rubin J B, Edwards H W. Calculation of solubility values for a range of pressure and temperature conditions, including the supercritical region, Industrial & Engineering Chemistry Research. 43 (2004) 4967- 4972.

DOI: 10.1021/ie0497543

Google Scholar

[12] McClain J B, Betts D E, Canelas D A, et al., Characterization of polymers and Amphiphiles in supercritical CO2 using small angle neutron scattering and Viscometry, Spring meeting of the ACS, Division of Polymer Material, New Orleans La: Science and Engineering. 74(1996).

Google Scholar

[13] Enick R M, Beckman E, Yazdi A, et al. Phase behavior of CO2-perfluoropolyether oil mixtures and CO2-perfluoropolyether chelating agent mixtures, Supercritical Fluids. 13 (1998) 121-126.

DOI: 10.1016/s0896-8446(98)00043-6

Google Scholar

[14] Enick R M. A literature review of attempts to increase the viscosity of dense CO2, University of Pittsburgh Report, (1998).

Google Scholar

[15] Jianhang Xu, CO2 thicking agent for reduced CO2 mobility, Pittsburgh: University of Pittsburgh, (2003).

Google Scholar

[16] Huang Z, Shi C, Xu J, et al., Enhancement of the viscosity of CO2 using styrene/fluoroacrylate Copolymers, J. Macromolecules. 33 (2000) 5437- 5442.

DOI: 10.1021/ma992043+

Google Scholar

[17] Jianhang Xu, Aron Wlaschin, R M Enick. Thickening CO2 with the fluoroacrylate-styrene copolymer. SPE71497, (2001).

Google Scholar

[18] R E Terry, A Zaid, C Angelos, D L Whitman, Polymerization in Supercritical CO2 To Improve CO2/Oil Mobility Ratios. SPE 16270, (1987).

DOI: 10.2118/16270-ms

Google Scholar

[19] G W Lancaster, C Barrientos, E Li, R C Greenhorn, High phase volume liquid CO2 fracturing fluids. CIM 87-38- 71, (1987).

Google Scholar

[20] G W Lancaster, M Sinal, Liquid CO2 Fracturing: Advantages and Limitations, The Journal of Canadian Petroleum Technology. 26(1986)26-30.

DOI: 10.2118/87-05-01

Google Scholar

[21] R M Enick, E J Beckman, Andrew Hamilton, Report: Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods. (2009).

DOI: 10.2172/968338

Google Scholar

[22] Sarbu T, T Styranec, E J Beckman, Non-Fluorous Polymers with very High Solubility in Supercritical CO2 down to Low Pressures, Nature. 405(2000)165-168.

DOI: 10.1038/35012040

Google Scholar

[23] R M Enick, D Olsen, et al., Mobility and Conformance Control for CO2 EOR via Thickeners, Foams and Gels—A Literature Review of 40 Years of Research and Pilot Tests. SPE154122, (2012).

DOI: 10.2118/154122-ms

Google Scholar

[24] R M Enick, E J Beckman, Andrew Hamilton, Report: Novel CO2-Thickeners for Improved Mobility Control, (2001).

DOI: 10.2172/825007

Google Scholar

[25] Shi C, Huang Z, Xu J, et al., The gelation of CO2: A sustainable route to the creation Of miscrocellular materials, Science. 19 (1999) 1540-1543.

Google Scholar

[26] Paik I H, Tapriyal D, Enick R, Hamilton, A Fiber formation by highly CO2-soluble bis-ureas based on peracetylated carbonhydrate groups, Angewandte chemic international edition. 46(2007)3284-3287.

DOI: 10.1002/anie.200604844

Google Scholar

[27] Gullapalli P, Tsau J S, Heller J P, Gelling behavior of 12 hydroxystearic acid in organic fluids and dense CO2. SPE 28979, (1995).

DOI: 10.2118/28979-ms

Google Scholar

[28] Heller J P, Dandge D K, Card R J, Donaruma L G. Direct thickeners for mobility control of CO2 floods, Society of Petroleum Engineers Journal. 25(1985) 679-686.

DOI: 10.2118/11789-pa

Google Scholar

[29] Dandge D K, Taylor C, Heller J P, Wilson K V, Brumley N, Associative Organotin Polymers. 2. Solution Properties of Symmetric Trialkyltin Fluorides, Journal of Macromolecular Science. 26(1989)1451-1464.

DOI: 10.1080/00222338908052062

Google Scholar

[30] Heller J, Dandge D, Topical Viscosity Control for Light Hydrocarbon Displacing Fluids in Petroleum Recovery and in Fracturing Fluids for Well Stimulation, U.S. Patent: 4607696(1986).

Google Scholar

[31] Heller J, Kovarik F, Improvement of CO2 Flood Performance, Petroleum Recovery Research Center Report, (1987).

Google Scholar

[32] R M Enick, E J Beckman, Chunmei Shi, et al., Direct Thickeners for CO2. SPE59325, (2000).

Google Scholar

[33] Chunmei Shi, Zhihua Huang, E J Beckman, et al., Semi-Fluorinated Trialkyltin Fluorides and Fluorinated Telechelic Ionomers as Viscosity-Enhancing Agents for CO2, Industrial & Engineering Chemistry Research. 40(2001)908-913.

DOI: 10.1021/ie0001321

Google Scholar

[34] Liave F M, Chung F T, Burchfield T E, Use of entrainers in improving mobility control of supercritical CO2, SPE Reservoir Engineering. 5(1990)47-51.

DOI: 10.2118/17344-pa

Google Scholar

[35] Trickett K, Xing D, Enick R, et al., Rod-like micelles thicken CO2, Langmuir. 26(2010)83-88.

DOI: 10.1021/la902128g

Google Scholar

[36] Consani K A, R D Smith, Observations on the Solubility of Surfactants and Related Molecules in CO2 at 50°C, Journal of Supercritical Fluids. 3(1990)51-65.

Google Scholar

[37] Hoefling T A, R M Enick, E J Beckman, Microemulsions in Near-Critical and Supercritical CO2, J. Phys. Chem. 95 (1991) 7127-7129.

DOI: 10.1021/j100172a006

Google Scholar

[38] Newman D A, et al., Phase-Behavior of Fluoroether-Functional Amphiphiles in Supercritical CO2, Journal of Supercritical Fluids. 6 (1993) 205-210.

DOI: 10.1016/0896-8446(93)90028-v

Google Scholar

[39] Desimone J M, Z Guan, and C S Elsbernd, Synthesis of Fluoropolymers in Supercritical CO2, Science. 257 (1992) 945-947.

DOI: 10.1126/science.257.5072.945

Google Scholar

[40] Hoefling T A, et al., Effect of Structure on the Cloud-Point Curves of Silicone Based Amphiphiles in Supercritical CO2, Journal of Supercritical Fluids. 6 (1993) 165-171.

DOI: 10.1016/0896-8446(93)90015-p

Google Scholar

[41] Hoefling T A, et al., Design and Synthesis of Highly CO2 Soluble Surfactants and Chelating-Agents, Fluid Phase Equilibria. 83 (1993) 203-212.

DOI: 10.1016/0378-3812(93)87023-t

Google Scholar

[42] Heitz M P, et al., Water Core within Perfluopolyether-based Microemulsions formed in Supercritical CO2, J. Phys. Chem. B. 101(1997)6707.

Google Scholar

[43] Harrison K , et al., Water-in-CO2 Microemulsions with a Fluorocarbon-Hydrocarbon Hybrid surfactant, Langmuir. 10(1994)3536-3541.

DOI: 10.1021/la00022a028

Google Scholar

[44] Stephen Cummings, Dazun Xing, Robert Enick, et al., Design principles for supercritical CO2 viscosifiers, Soft Matter. 8 (2012) 7044-7055.

DOI: 10.1039/c2sm25735a

Google Scholar

[45] Audrey Dupont, Julian Eastoe, Laura Martin, et al., Hybrid fluorocarbon hydrocarbon CO2-philic surfactants, Langmuir. 20 (2004) 9960-9967.

DOI: 10.1021/la0483820

Google Scholar

[46] Fink R, E J Beckman, Phase Behavior of Siloxane-based Amphiphiles in Supercritical CO2, Journal of Supercritical Fluids. 18 (2000) 101-110.

DOI: 10.1016/s0896-8446(00)00052-8

Google Scholar

[47] Psathas P A, et al., Water-in-CO2 Emulsions with Poly(dimethylsiloxane)-based Block Copolymer Ionomers. Industrial & Engineering Chemistry Research. 39 (2000) 2655-2664.

DOI: 10.1021/ie990779p

Google Scholar

[48] R Fink, E J Beckman, R Valentine, et. al., Toward the development of CO2-philic, hydrocarbons. 1. Use of side-chain functionalization to lower the miscibility pressure of polydimethylsiloxanes in CO2, J. Phys. Chem.B. 103 (1999) 6441-6444.

DOI: 10.1021/jp990333m

Google Scholar

[49] SRP da Rocha, J Dickson, D Cho, PJ Rossky, et al., Stubby surfactants for stabilization of water and CO2 emulsions: Trisiloxanes, Langmuir. 19 (2003)3114-3120.

DOI: 10.1021/la026608y

Google Scholar

[50] Hutton B H, Pcrera J M, Gricser F, et a1., AOT reverse, micro-emulsions in SC-CO2—a further investigation, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 189 (2001) 177-181.

DOI: 10.1016/s0927-7757(01)00474-5

Google Scholar

[51] Ji M, Chen X, Wai C M, Fulton J L J, Synthesizing and dispersing silver nanoparticles in A water-in-supercritical CO2 microemulsion, J. Am. Chem. Soc. 121 (1999) 2631- 2632.

DOI: 10.1021/ja9840403

Google Scholar

[52] Eastoe J, Paul A, Nave S, et al., Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electro-optics, Journal of American Chemical Society 123 (2001) 988-989.

Google Scholar

[53] Eastoe J, Dupont A, Steytler C D, et al., Micellization of economically viable surfactants in CO2, Journal of Colloid and Interface Science. 258 (2003) 367-373.

DOI: 10.1016/s0021-9797(02)00104-2

Google Scholar

[54] Eastoe J, Gold S, Rogers S, et al. Designed CO2-philes stabilize water-in-CO2 microemulsions, J. Angewandte Chemie, International Edition. 45 (2006) 3675 -3677.

DOI: 10.1002/anie.200600397

Google Scholar

[55] Ryoo W, Wobber S E, Johnston K P, Water-in-CO2 micromulsions with methylated branched hydrocarbon surfactants, Industrial & Engineering Chemistry Research. 42 (2003) 6348-6358.

DOI: 10.1021/ie0300427

Google Scholar

[56] Liu J, Han B, Li G, et al., Investigation of nonionic surfactant Dynol-604 based microemulsion formed in Supercritical CO2. Langmuir. 17 (2001) 8040-8043.

DOI: 10.1021/la010743d

Google Scholar

[57] Juncheng Liu, Buxing Han, Zhengwu Wang, et al., Solubility of Ls-36 and Ls-45 Surfactants in Supercritical CO2 and Loading Water in the CO2/Water/Surfactant Systems, Langmuir. 18 (2002) 3086-3089.

DOI: 10.1021/la011721u

Google Scholar