Relationship between the Textures and the Elastic Moduli of Electron Beam Welded Joint in Ti-6Al-4V Titanium Alloy

Article Preview

Abstract:

The microstructure, texture and elastic modulus of electron beam welding joint in Ti-6Al-4V titanium alloy were investigated by transmission electron microscopy, X-ray diffraction, electron back scattered diffraction and nanoindentation techniques. The α phase was in the majority, and a {0001} <-2110> texture of α phase was observed in the base material. A very weak {11-23} <-1-122> texture of α phase was in the fuse zone. Most of the α grain boundaries in the fuse zone were high-angle boundaries by electron backscattered diffraction, and it also confirmed that the orientations of α phase had a nearly random distribution in the fuse zone. The maximum average elastic modulus value measured by the nanoindentation techniques was in the base material due to the effect of the {0001} <-2110> texture. The average elastic moduli of three different zones in the joint were 134.8±3.5Gpa, 125.5±5.8Gpa and 123.0±4.7Gpa, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1910-1917

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Matsumoto, S. Watanabe, S. Hanada, Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated, J. Alloys Compd. 439 (2007) 146-155.

DOI: 10.1016/j.jallcom.2006.08.267

Google Scholar

[2] A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov, Microstructure, texture, and mechanical properties of electron-beam melted Ti–6Al–4V, Mater. Sci. Eng. A 346 (2003) 178-188.

DOI: 10.1016/s0921-5093(02)00518-x

Google Scholar

[3] Z.S. Zhu, R.Y. Liu, M.G. Yan, Texture control and the anisotropy of mechanical properties in titanium sheet, J. Mater. Sci. 32 (1997) 5163-5167.

Google Scholar

[4] L. Yu, K. Nakata, N. Yamamoto, Texture and its effect on mechanical properties in fiber laser weld of a fine-grained Mg alloy, Mater. Lett. 63 (2009) 870-872.

DOI: 10.1016/j.matlet.2009.01.050

Google Scholar

[5] W. Chen, C.J. Boehlert, Texture induced anisotropy in extruded Ti–6Al–4V–xB alloys, Mater. Charact. 62 (2011) 333-339.

DOI: 10.1016/j.matchar.2011.01.008

Google Scholar

[6] M.R. Bache, W.J. Evans, Impact of texture on mechanical properties in an advanced titanium alloy, Mater. Sci. Eng. A 319-321 (2001) 409-414.

DOI: 10.1016/s0921-5093(00)02034-7

Google Scholar

[7] A.P. Reynolds, E. Hood, W. Tang, Texture in friction stir welds of Timetal 21S, Scripta. Mater. 52 (2005) 491-494.

DOI: 10.1016/j.scriptamat.2004.11.009

Google Scholar

[8] K.E. Knipling, R.W. Fonda, Texture development in the stir zone of near-α titanium friction stir welds, Scripta. Mater. 60 (2009) 1097-1100.

DOI: 10.1016/j.scriptamat.2009.02.050

Google Scholar

[9] R.W. Fonda, K.E. Knipling, Texture development in near-a Ti friction stir welds, Acta Mater. 58 (2010) 6452-6463.

DOI: 10.1016/j.actamat.2010.08.007

Google Scholar

[10] L. Zhou, H.J. Liu, Q.W. Liu, Effect of process parameters on stir zone microstructure in Ti–6Al–4V friction stir welds, J. Mater. Sci. 45 (2010) 39-45.

DOI: 10.1007/s10853-009-3881-1

Google Scholar

[11] T. Karthikeyan, A. Dasgupta, S. Saroja, Solidification structure in Ti–5Ta–1. 8Nb weld, Sci. Technol. Weld. Joining 14 (2009) 597-605.

DOI: 10.1179/136217109x12489665059465

Google Scholar

[12] R.K. Leary, E. Merson, K. Birmingham, Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and Ti–6Al–4V, Mater. Sci. Eng. A 527 (2010) 7694-7705.

DOI: 10.1016/j.msea.2010.08.036

Google Scholar

[13] Sen Indrani, U. Ramamurty, Elastic modulus of Ti–6Al–4V–xB alloys with B up to 0. 55 wt. % , Scripta. Mater. 62 (2010) 37-40.

DOI: 10.1016/j.scriptamat.2009.09.022

Google Scholar

[14] V.H.B. Hernandez, S.K. Panda, Y. Okita, A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation, J. Mater. Sci. 45 (2010) 1638-1647.

DOI: 10.1007/s10853-009-4141-0

Google Scholar

[15] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[16] J.M. Manero, F.J. Gil, J.A. Planell, Deformation mechanisms of Ti–6Al–4V alloy with a martensitic microstructure subjected to oligocyclic fatigue, Acta. Mater. 48 (2000) 3353-3359.

DOI: 10.1016/s1359-6454(00)00152-x

Google Scholar

[17] R. Mythili, V.T. Paul, S. Saroja, Study of transformation behavior in a Ti–4. 4 Ta–1. 9 Nb alloy, Mater. Sci. Eng. A 390 (2005) 299-312.

DOI: 10.1016/j.msea.2004.08.035

Google Scholar

[18] K.K. Murthy, S. Sundaresan, Phase transformations in a welded near-alpha titanium alloy as a function of weld cooling rate and post-weld heat treatment conditions, J. Mater. Sci. 33 (1998) 817-826.

Google Scholar

[19] N. Gey, M. Humbert, Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet, Acta Mater. 50 (2002) 277-287.

DOI: 10.1016/s1359-6454(01)00351-2

Google Scholar

[20] T. Karthikeyan, A. Dasgupta, R. Khatirka, Effect of cooling rate on transformation texture and variant selection during β → α transformation in Ti–5Ta–1. 8Nb alloy, Mater. Sci. Eng. A 528 (2010) 549-558.

DOI: 10.1016/j.msea.2010.09.055

Google Scholar

[21] G.B. Viswanathan, E. Lee, Direct observations and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation Acta Mater. 53 (2005) 5101-5115.

DOI: 10.1016/j.actamat.2005.07.030

Google Scholar

[22] A. Kumar, U. Rabe, W. Arnold, Mapping of Elastic Stiffness in an α+β Titanium Alloy using Atomic Force Acoustic Microscopy, Jap. J. Appl. Phys. 47 (2008) 6077-6080.

DOI: 10.1143/jjap.47.6077

Google Scholar

[23] A.F. Gerday, M.B. Bettaieb, L. Duchêne, Material behavior of the hexagonal alpha phase of a titanium alloy identified from nanoindentation tests, Eur. J. Mech. A 30 (2011) 248-255.

DOI: 10.1016/j.euromechsol.2010.11.001

Google Scholar