[1]
H. Matsumoto, S. Watanabe, S. Hanada, Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated, J. Alloys Compd. 439 (2007) 146-155.
DOI: 10.1016/j.jallcom.2006.08.267
Google Scholar
[2]
A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov, Microstructure, texture, and mechanical properties of electron-beam melted Ti–6Al–4V, Mater. Sci. Eng. A 346 (2003) 178-188.
DOI: 10.1016/s0921-5093(02)00518-x
Google Scholar
[3]
Z.S. Zhu, R.Y. Liu, M.G. Yan, Texture control and the anisotropy of mechanical properties in titanium sheet, J. Mater. Sci. 32 (1997) 5163-5167.
Google Scholar
[4]
L. Yu, K. Nakata, N. Yamamoto, Texture and its effect on mechanical properties in fiber laser weld of a fine-grained Mg alloy, Mater. Lett. 63 (2009) 870-872.
DOI: 10.1016/j.matlet.2009.01.050
Google Scholar
[5]
W. Chen, C.J. Boehlert, Texture induced anisotropy in extruded Ti–6Al–4V–xB alloys, Mater. Charact. 62 (2011) 333-339.
DOI: 10.1016/j.matchar.2011.01.008
Google Scholar
[6]
M.R. Bache, W.J. Evans, Impact of texture on mechanical properties in an advanced titanium alloy, Mater. Sci. Eng. A 319-321 (2001) 409-414.
DOI: 10.1016/s0921-5093(00)02034-7
Google Scholar
[7]
A.P. Reynolds, E. Hood, W. Tang, Texture in friction stir welds of Timetal 21S, Scripta. Mater. 52 (2005) 491-494.
DOI: 10.1016/j.scriptamat.2004.11.009
Google Scholar
[8]
K.E. Knipling, R.W. Fonda, Texture development in the stir zone of near-α titanium friction stir welds, Scripta. Mater. 60 (2009) 1097-1100.
DOI: 10.1016/j.scriptamat.2009.02.050
Google Scholar
[9]
R.W. Fonda, K.E. Knipling, Texture development in near-a Ti friction stir welds, Acta Mater. 58 (2010) 6452-6463.
DOI: 10.1016/j.actamat.2010.08.007
Google Scholar
[10]
L. Zhou, H.J. Liu, Q.W. Liu, Effect of process parameters on stir zone microstructure in Ti–6Al–4V friction stir welds, J. Mater. Sci. 45 (2010) 39-45.
DOI: 10.1007/s10853-009-3881-1
Google Scholar
[11]
T. Karthikeyan, A. Dasgupta, S. Saroja, Solidification structure in Ti–5Ta–1. 8Nb weld, Sci. Technol. Weld. Joining 14 (2009) 597-605.
DOI: 10.1179/136217109x12489665059465
Google Scholar
[12]
R.K. Leary, E. Merson, K. Birmingham, Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and Ti–6Al–4V, Mater. Sci. Eng. A 527 (2010) 7694-7705.
DOI: 10.1016/j.msea.2010.08.036
Google Scholar
[13]
Sen Indrani, U. Ramamurty, Elastic modulus of Ti–6Al–4V–xB alloys with B up to 0. 55 wt. % , Scripta. Mater. 62 (2010) 37-40.
DOI: 10.1016/j.scriptamat.2009.09.022
Google Scholar
[14]
V.H.B. Hernandez, S.K. Panda, Y. Okita, A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation, J. Mater. Sci. 45 (2010) 1638-1647.
DOI: 10.1007/s10853-009-4141-0
Google Scholar
[15]
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[16]
J.M. Manero, F.J. Gil, J.A. Planell, Deformation mechanisms of Ti–6Al–4V alloy with a martensitic microstructure subjected to oligocyclic fatigue, Acta. Mater. 48 (2000) 3353-3359.
DOI: 10.1016/s1359-6454(00)00152-x
Google Scholar
[17]
R. Mythili, V.T. Paul, S. Saroja, Study of transformation behavior in a Ti–4. 4 Ta–1. 9 Nb alloy, Mater. Sci. Eng. A 390 (2005) 299-312.
DOI: 10.1016/j.msea.2004.08.035
Google Scholar
[18]
K.K. Murthy, S. Sundaresan, Phase transformations in a welded near-alpha titanium alloy as a function of weld cooling rate and post-weld heat treatment conditions, J. Mater. Sci. 33 (1998) 817-826.
Google Scholar
[19]
N. Gey, M. Humbert, Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet, Acta Mater. 50 (2002) 277-287.
DOI: 10.1016/s1359-6454(01)00351-2
Google Scholar
[20]
T. Karthikeyan, A. Dasgupta, R. Khatirka, Effect of cooling rate on transformation texture and variant selection during β → α transformation in Ti–5Ta–1. 8Nb alloy, Mater. Sci. Eng. A 528 (2010) 549-558.
DOI: 10.1016/j.msea.2010.09.055
Google Scholar
[21]
G.B. Viswanathan, E. Lee, Direct observations and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation Acta Mater. 53 (2005) 5101-5115.
DOI: 10.1016/j.actamat.2005.07.030
Google Scholar
[22]
A. Kumar, U. Rabe, W. Arnold, Mapping of Elastic Stiffness in an α+β Titanium Alloy using Atomic Force Acoustic Microscopy, Jap. J. Appl. Phys. 47 (2008) 6077-6080.
DOI: 10.1143/jjap.47.6077
Google Scholar
[23]
A.F. Gerday, M.B. Bettaieb, L. Duchêne, Material behavior of the hexagonal alpha phase of a titanium alloy identified from nanoindentation tests, Eur. J. Mech. A 30 (2011) 248-255.
DOI: 10.1016/j.euromechsol.2010.11.001
Google Scholar