[1]
S. Pallavkar, T.H. Kim, D. Rutman, J. lin and T. Ho, Active regeneration of diesel particulate filter employing microwave heating, Ind. Eng. Chem. Res. 48 (2009) 69-79.
DOI: 10.1021/ie800780g
Google Scholar
[2]
C.C. Lee, Fabrication of porous composite material for diesel particulate filter and the regeneration by microwave heating, PhD thesis, Tohoku University, Japan, March (2013).
Google Scholar
[3]
V. Palma, P. Russo, M. D'Amore and P. Ciambelli, Microwave regeneration catalytic foam: a more effective way for PM reduction. Top. Catal. 30/31 (2004) 261-264.
DOI: 10.1023/b:toca.0000029760.71201.bf
Google Scholar
[4]
J. Beckers, L.M. Vander Zande and G. Rothenberg, Clean diesel power via microwave susceptible oxidation catalysts, Chem. Phys. Chem. 7 (2006) 747-755.
DOI: 10.1002/cphc.200500420
Google Scholar
[5]
V. Palme, P. Russo, G. Matarazzo and P. Ciambelli, Microwave improvement of catalyst performance in soot oxidation without additives, Appl. Catal. B: Environ. 70 (2007) 254-260.
DOI: 10.1016/j.apcatb.2006.01.025
Google Scholar
[6]
Y.Z. Steenwinkel, L.M. Vander Zande, H.L. Cstricum, A. Bliek, R.W. Vanden Brink and G.D. Elizinga, Microwave assisted in-situ regeneration of a perovskite coated diesel soot filter, Chem. Eng. Sci. 60 (2005) 797-804.
DOI: 10.1016/j.ces.2004.09.042
Google Scholar
[7]
Z. Ning and Y. He, Experimental study on microwave regeneration characteristics of diesel particulate after-treatment system, Soc. Auto. Eng. 1999-01-1470 (1999).
DOI: 10.4271/1999-01-1470
Google Scholar
[8]
J. Ma, M. Fang, P. Li, B. Zhu, X. Lu and N. T Lau, Microwave assisted catalytic combustion of diesel soot, Appl. Catal. 159 (1997) 211-228.
DOI: 10.1016/s0926-860x(97)00043-4
Google Scholar
[9]
R. Nixidorf, J.G. Green, J.M. Story and R.M. Wagner, Microwave regenerated diesel exhaust particulate filter, Soc. Auto. Eng. 2001-01-0903 (2001).
Google Scholar
[10]
A.B. Sifontes, M. Urbina, F. Fajardo, L. Melo, L. García, M. Mediavilla, N. Carriόn, J.L. Brito, P. Hernandez, R. Solano, G. Mejias and A. Quintero, Preparation of ɣ- Alumina Foams of High Surface Area Employing the Polyurethane Sponge Replica Method. Lat. Am. Appl. Res. 40 (2010).
DOI: 10.1007/s10853-009-3693-3
Google Scholar
[11]
C.C. Lee, N. Yoshikawa and S. Taniguchi, Microwave-induced substitutional combustion reaction of Fe3O4/Al ceramic matrix porous composite, J. Mat. Sci., 46 (21) (2011) 7004-7011.
DOI: 10.1007/s10853-011-5669-3
Google Scholar