Porous Glass Composite as Diesel Particulate Filter and the Microwave Regeneration

Article Preview

Abstract:

In this study, porous SiO2·RO/stainless steel composite body was prepared through the polyurethane sponge replica method. Porous samples obtained through sintering consist of well dispersed and distributed stainless steel particles within the glass matrix. Such microstructure is desired for the purpose as a soot particulate filters (DPF) utilizing microwave rapid and selective heating characteristic, especially during the cold start phase of an engine. Results of microwave heating ability and diesel soot regeneration tests shows that, the fabricated porous composite material is proven to be reliable for rapidly microwave assisted regeneration. Both the regeneration temperature and O2 composition in the supplied gas played an important role in the regeneration process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2050-2053

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pallavkar, T.H. Kim, D. Rutman, J. lin and T. Ho, Active regeneration of diesel particulate filter employing microwave heating, Ind. Eng. Chem. Res. 48 (2009) 69-79.

DOI: 10.1021/ie800780g

Google Scholar

[2] C.C. Lee, Fabrication of porous composite material for diesel particulate filter and the regeneration by microwave heating, PhD thesis, Tohoku University, Japan, March (2013).

Google Scholar

[3] V. Palma, P. Russo, M. D'Amore and P. Ciambelli, Microwave regeneration catalytic foam: a more effective way for PM reduction. Top. Catal. 30/31 (2004) 261-264.

DOI: 10.1023/b:toca.0000029760.71201.bf

Google Scholar

[4] J. Beckers, L.M. Vander Zande and G. Rothenberg, Clean diesel power via microwave susceptible oxidation catalysts, Chem. Phys. Chem. 7 (2006) 747-755.

DOI: 10.1002/cphc.200500420

Google Scholar

[5] V. Palme, P. Russo, G. Matarazzo and P. Ciambelli, Microwave improvement of catalyst performance in soot oxidation without additives, Appl. Catal. B: Environ. 70 (2007) 254-260.

DOI: 10.1016/j.apcatb.2006.01.025

Google Scholar

[6] Y.Z. Steenwinkel, L.M. Vander Zande, H.L. Cstricum, A. Bliek, R.W. Vanden Brink and G.D. Elizinga, Microwave assisted in-situ regeneration of a perovskite coated diesel soot filter, Chem. Eng. Sci. 60 (2005) 797-804.

DOI: 10.1016/j.ces.2004.09.042

Google Scholar

[7] Z. Ning and Y. He, Experimental study on microwave regeneration characteristics of diesel particulate after-treatment system, Soc. Auto. Eng. 1999-01-1470 (1999).

DOI: 10.4271/1999-01-1470

Google Scholar

[8] J. Ma, M. Fang, P. Li, B. Zhu, X. Lu and N. T Lau, Microwave assisted catalytic combustion of diesel soot, Appl. Catal. 159 (1997) 211-228.

DOI: 10.1016/s0926-860x(97)00043-4

Google Scholar

[9] R. Nixidorf, J.G. Green, J.M. Story and R.M. Wagner, Microwave regenerated diesel exhaust particulate filter, Soc. Auto. Eng. 2001-01-0903 (2001).

Google Scholar

[10] A.B. Sifontes, M. Urbina, F. Fajardo, L. Melo, L. García, M. Mediavilla, N. Carriόn, J.L. Brito, P. Hernandez, R. Solano, G. Mejias and A. Quintero, Preparation of ɣ- Alumina Foams of High Surface Area Employing the Polyurethane Sponge Replica Method. Lat. Am. Appl. Res. 40 (2010).

DOI: 10.1007/s10853-009-3693-3

Google Scholar

[11] C.C. Lee, N. Yoshikawa and S. Taniguchi, Microwave-induced substitutional combustion reaction of Fe3O4/Al ceramic matrix porous composite, J. Mat. Sci., 46 (21) (2011) 7004-7011.

DOI: 10.1007/s10853-011-5669-3

Google Scholar