An Effective Model for Wire Medium Based on the 4th Order Dispersion Equation

Article Preview

Abstract:

In this paper, the wire medium made of parallel thin wires is studied by using the FDTD method incorporating the sub-cell technique of thin wire. The conventional effective model for the wire medium is based on the 2th order dispersion equations; and it becomes inaccurate in describing the EM behavior of wire medium when the transversal spatial harmonics becomes high. A new effective model is proposed based on the 4th order dispersion equations and surface fitting, which guarantees the modeling accuracy for higher spatial harmonics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2225-2229

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Pavel A. Belov, Constantin R. Simovski, and Pekka Ikonen, Canalization of subwavelength images by electromagnetic crystals, Phys. Rev. B 71(19), 193105(2005).

DOI: 10.1103/physrevb.71.193105

Google Scholar

[2] Pavel A. Belov, Yang Hao, and Sunil Sudhakaran, Subwavelength microwave imaging using an array of parallel conducting wires as a lens, Phys. Rev. B 73(3), 033108 (2006).

DOI: 10.1103/physrevb.73.033108

Google Scholar

[3] Yan Zhao, Pavel A. Belov, and Yang Hao, Spatially dispersive finite-difference time-domain analysis of sub-wavelength imaging by the wire medium slabs, Opt. Express. 14(12), 5154-5167 (2006).

DOI: 10.1364/oe.14.005154

Google Scholar

[4] Yan Zhao, Pavel A. Belov, and Yang Hao, Modelling of wave propagation in wire media using spatially dispersive Finite-Difference Time-Domain method: numerical aspects, IEEE Trans. Antennas Propag. 55(6), 1506-1513 (2007).

DOI: 10.1109/tap.2007.897320

Google Scholar

[5] Pavel A. Belov, Yan Zhao, Simon Tse, Pekka Ikonen, Mário G. Silveirinha, Constantin R. Simovski, Sergei Tretyakov, Yang Hao, and Clive Parini, Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range, Phys. Rev. B 77(19), 193108 (2008).

DOI: 10.1103/physrevb.77.193108

Google Scholar

[6] P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires, J. of Electromagn. Waves and Appl. 16(8), 1153–1170 (2002).

DOI: 10.1163/156939302x00688

Google Scholar

[7] P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, Strong spatial dispersion in wire media in the very large wavelength limit, Phys. Rev. B 67(11), 113103 (2003).

DOI: 10.1142/9789812704344_0025

Google Scholar

[8] Mário G. Silveirinha, Additional boundary condition for the wire medium, IEEE Trans. Antennas Propag. 54(6), 1766-1780 (2006).

DOI: 10.1109/tap.2006.875920

Google Scholar

[9] Pavel A. Belov, and Mário G. Silveirinha, Resolution of subwavelength transmission devices formed by a wire medium, Phys. Rev. E 73(5), 056607 (2006).

DOI: 10.1103/physreve.73.056607

Google Scholar

[10] Riku M. Mäkinen, Jaakko S. Juntunen, and Markku A. Kivikoski, An improved thin-wire model for FDTD, IEEE Trans. Microw. Theory Tech. 50(5), 1245-1255 (2002).

DOI: 10.1109/22.999136

Google Scholar