Highly Efficient Adsorption of Eriochrome Black T in Wastewater on Mesoporous Alumina Sphere

Article Preview

Abstract:

The present study presents the adsorption behavior of mesoporous alumina sphere for Eriochrome black T (EBT) azo dyes. The batch adsorption experiments were carried out to optimize various experimental parameters such as contact time and dye concentration. The maximum adsorption of EBT was achieved 312.5mg/g. The kinetic studies revealed that the adsorption process followed the pseudo-second-order kinetic model. The adsorption behavior was analyzed by Langmuir and Freundlich isotherms. The values of correlation coefficients (R) showed that the Langmuir isotherm model found to be best fit. Results of study showed that Mesoporous alumina sphere proved to be highly effective for the removal of selected azo dyes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

834-842

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Deveci, A. Unyayar, M.A. Mazmanci, Production of Remazol Brilliant Blue R decolourising oxygenase from the culture filtrate of Funalia trogii ATCC 200800, Journal of Molecular Catalysis B: Enzymatic, 30 (2004) 25-32.

DOI: 10.1016/j.molcatb.2004.03.002

Google Scholar

[2] G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresource Technology, 97 (2006) 1061-1085.

DOI: 10.1016/j.biortech.2005.05.001

Google Scholar

[3] M. Chiou, H. Li, Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads, Chemosphere, 50 (2003) 1095-1105.

DOI: 10.1016/s0045-6535(02)00636-7

Google Scholar

[4] M.S. Chiou, H.Y. Li, Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads, Journal of hazardous materials, 93 (2002) 233-248.

DOI: 10.1016/s0304-3894(02)00030-4

Google Scholar

[5] T. Panswad, S. Wongchaisuwan, Mechanisms of dye wastewater colour removal by magnesium carbonate-hydrated basic, Water Science and Technology WSTED 4, 18 (1986).

DOI: 10.2166/wst.1986.0045

Google Scholar

[6] V. Santos, M. Pereira, P. Faria, J. ¨Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons, Journal of hazardous materials, 162 (2009) 736-742.

DOI: 10.1016/j.jhazmat.2008.05.090

Google Scholar

[7] M. Koch, A. Yediler, D. Lienert, G. Insel, A. Kettrup, Ozonation of hydrolyzed azo dye reactive yellow 84 (CI), Chemosphere, 46 (2002) 109-113.

DOI: 10.1016/s0045-6535(01)00102-3

Google Scholar

[8] F. Harrelkas, A. Azizi, A. Yaacoubi, A. Benhammou, M.N. Pons, Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon, Desalination, 235 (2009) 330-339.

DOI: 10.1016/j.desal.2008.02.012

Google Scholar

[9] G. Ciardelli, L. Corsi, M. Marcucci, Membrane separation for wastewater reuse in the textile industry, Resources, conservation and recycling, 31 (2001) 189-197.

DOI: 10.1016/s0921-3449(00)00079-3

Google Scholar

[10] R. Couto, Dye removal by immobilised fungi, Biotechnology advances, 27 (2009) 227-235.

DOI: 10.1016/j.biotechadv.2008.12.001

Google Scholar

[11] F.C. Wu, R.L. Tseng, High adsorption capacity NaOH-activated carbon for dye removal from aqueous solution, Journal of hazardous materials, 152 (2008) 1256-1267.

DOI: 10.1016/j.jhazmat.2007.07.109

Google Scholar

[12] M. Anbia, S.E. Moradi, Adsorption of naphthalene-derived compounds from water by chemically oxidized nanoporous carbon, Chemical Engineering Journal, 148 (2009) 452-458.

DOI: 10.1016/j.cej.2008.09.032

Google Scholar

[13] C. Namasivayam, R. Radhika, S. Suba, Uptake of dyes by a promising locally available agricultural solid waste: coir pith, Waste Management, 21 (2001) 381-387.

DOI: 10.1016/s0956-053x(00)00081-7

Google Scholar

[14] A. Namane, A. Mekarzia, K. Benrachedi, N. Belhaneche-Bensemra, A. Hellal, Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4, Journal of hazardous materials, 119 (2005).

DOI: 10.1016/j.jhazmat.2004.12.006

Google Scholar

[15] I. Uzun, Kinetics of the adsorption of reactive dyes by chitosan, Dyes and pigments, 70 (2006) 76-83.

DOI: 10.1016/j.dyepig.2005.04.016

Google Scholar

[16] M. Hartmann, Ordered mesoporous materials for bioadsorption and biocatalysis, Chemistry of materials, 17 (2005) 4577-4593.

DOI: 10.1021/cm0485658

Google Scholar

[17] S.W. Boettcher, J. Fan, C.K. Tsung, Q. Shi, G.D. Stucky, Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials, Accounts of chemical research, 40 (2007) 784-792.

DOI: 10.1021/ar6000389

Google Scholar

[18] Y. Kim, C. Kim, I. Choi, S. Rengaraj, J. Yi, Arsenic removal using mesoporous alumina prepared via a templating method, Environ. Sci. Technol., 38 (2004) 924-931.

DOI: 10.1021/es0346431

Google Scholar

[19] S. Rengaraj, Y. Kim, C.K. Joo, J. Yi, Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium, Journal of colloid and interface science, 273 (2004) 14-21.

DOI: 10.1016/j.jcis.2004.01.007

Google Scholar

[20] Z. Wang, X. Tian, C. Yang, Y. Zhao, Z. Pi, Synthesis, Characterization and Catalytic Applications in Propane Dehydrogenation of Ordered Mesoporous Alumina, Journal of Nanoscience and Nanotechnology, 9 (2009) 6876-6882.

DOI: 10.1166/jnn.2009.1473

Google Scholar

[21] B. Xu, T. Xiao, Z. Yan, X. Sun, J. Sloan, S.L. Gonzalez-Cortes, F. Alshahrani, M.L.H. Green, Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system, Microporous and mesoporous materials, 91 (2006).

DOI: 10.1016/j.micromeso.2005.12.007

Google Scholar

[22] W. Deng, P. Bodart, M. Pruski, B. Shanks, Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating, Microporous and Mesoporous Materials, 52 (2002) 169-177.

DOI: 10.1016/s1387-1811(02)00315-3

Google Scholar

[23] Y.S. Cho, J.C. Park, B. Lee, Y. Kim, J.H. Yi, Preparation of mesoporous catalyst supported on silica with finely dispersed Ni particles, Catalysis Letters, 81 (2002) 89-96.

Google Scholar

[24] Y. Kim, P. Kim, C. Kim, J. Yi, A novel method for synthesis of a Ni/Al2O3 catalyst with a mesoporous structure using stearic acid salts, Journal of Materials Chemistry, 13 (2003) 2353-2358.

DOI: 10.1039/b303049k

Google Scholar

[25] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical Reviews, 97 (1997) 2373-2419.

DOI: 10.1021/cr960406n

Google Scholar

[26] Q. Yuan, A.X. Yin, C. Luo, L.D. Sun, Y.W. Zhang, W.T. Duan, H.C. Liu, C.H. Yan, Facile synthesis for ordered mesoporous ¦Ã-aluminas with high thermal stability, Journal of the American Chemical Society, 130 (2008) 3465-3472.

DOI: 10.1021/ja0764308

Google Scholar

[27] S. Rengaraj, Y. Kim, C. Joo, J. Yi, Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium, Journal of Colloid and Interface Science, 273 (2004) 14-21.

DOI: 10.1016/j.jcis.2004.01.007

Google Scholar

[28] S. Rengaraj, K. -H. Yeon, S. -H. Moon, Removal of chromium from water and wastewater by ion exchange resins, Journal of Hazardous Materials, 87 (2001) 273-287.

DOI: 10.1016/s0304-3894(01)00291-6

Google Scholar

[29] Y. Ho, C. Chiang, Sorption studies of acid dye by mixed sorbents, Adsorption, 7 (2001) 139-147.

Google Scholar

[30] P. Selvam, S. Preethi, P. Basakaralingam, Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite, Journal of Hazardous Materials, 155 (2008) 39-44.

DOI: 10.1016/j.jhazmat.2007.11.025

Google Scholar

[31] K. Hall, L. Eagleton, A. Acrivos, T. Vermeulen, Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Industrial & Engineering Chemistry Fundamentals, 5 (1966) 212-223.

DOI: 10.1021/i160018a011

Google Scholar