[1]
Lemmatize J and Caroche J L. Mechanics of solid Materials. Cambridge University Press, London, 1990, pp.15-20.
Google Scholar
[2]
Wang J. Low cycle fatigue and cycle dependent creep with continuum mechanics. Int. J. Damage Mech. 1(2) (1992) 237-244.
DOI: 10.1177/105678959200100204
Google Scholar
[3]
Jiang Jusheng, Xu jinquan, Resistence based fatigue damage chrecterization of metallic materials. Mechanical strength. 21 (3) (1999) 232-234.
Google Scholar
[4]
Jiang Jusheng, Guo Yimu. The quantitative research of fatigue damage for metallic materials. Materials science and Engineering. 18(1) (2000) 43-46.
Google Scholar
[5]
Li Xu-Dong, Wang Xi-Shu, Ren Huai-Hui, Chen Yin-Long, Mu Zhi-Tao. Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy. Corros. Sci. 55(2) (2012) 26-33.
DOI: 10.1016/j.corsci.2011.09.025
Google Scholar
[6]
X.D. Li, Z.T. Mu, Z.G. Liu. SEM In-situ study on pre-corrosion and fatigue cracking behavior of LY12CZ aluminum alloy. Advances in Fracture and Damage Mechanics XI. Trans Tech Publications, Switzerland. (2012) 81-84.
DOI: 10.4028/www.scientific.net/kem.525-526.81
Google Scholar
[7]
Xi-Shu Wang, Xu-Dong Li, Huai-Hui Ren, Hai-Yan Zhao , Ryosuke Murai, SEM in-situ study on high cyclic fatigue of SnPb-solder joint in the electronic packaging. Microelectronics Reliability. 51(2011) 1377-1384.
DOI: 10.1016/j.microrel.2011.02.011
Google Scholar