Single Step Synthesis of Gold Nanoparticles Decorated Graphene Oxide Using Aniline as Reducing Agent and Study its Application on Elecrocatalytic Detection of Tryptophan

Article Preview

Abstract:

A single step method for the synthesis of gold nanoparticles decorated graphene oxide nanocomposite using aniline as reducing agent has been developed. The composite was characterized using FE-SEM, UV-Vis and FT-IR and XRD analysis. The electron transfer behavior of the modified electrodes was investigated in a redox probe using cyclic voltammetry. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed to evaluate the electrochemical properties of AuNPs/GO/GCE towards the electrochemical oxidation of tryptophan. A calibration graph was constructed by plotting the concentration of tryptophan against the peak current. Under the optimum experimental conditions, the oxidation peak currents were measured by varying the tryptophan concentrations. The resulting sensor displays an excellent repeatability and long-term stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-191

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197-200.

DOI: 10.1038/nature04233

Google Scholar

[2] W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences 35 (2010) 52–71.

DOI: 10.1080/10408430903505036

Google Scholar

[3] D. A. Areshkin, C. T. White, Building Blocks for Integrated Graphene Circuits, Nano Lett. 7 (2007) 3253 -3259.

DOI: 10.1021/nl070708c

Google Scholar

[4] G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis, Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage, Nano Lett. 8 (2008) 3166-3170.

DOI: 10.1021/nl801417w

Google Scholar

[5] Y. Qian, Synthesis of Cuprous Oxide (Cu2O) Nanoparticles/Graphene Composite with an Excellent Electrocatalytic Activity Towards Glucose, Int. J. Electrochem. Sci. 7 (2012) 10063-10073.

Google Scholar

[6] H.L. Wang, Y. Y. Liang, T. Mirfakhrai, Z. Chen, H. S. Casalongue, H. J. Dai, Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials, Nano Res. 4 (2011) 729-736.

DOI: 10.1007/s12274-011-0129-6

Google Scholar

[7] X. Zhao, Q. H. Zhang, D. J. Chen, Enhanced Mechanical Properties of Graphene-Based Poly (vinyl alcohol) Composites, Macromolecules 43 (2010) 2357-2363.

DOI: 10.1021/ma902862u

Google Scholar

[8] S. Park, R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 29 (2009) 217–224.

Google Scholar

[9] F. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009)706–710.

DOI: 10.1038/nature07719

Google Scholar

[10] X. Lu, M. Yu, H. Huang, R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets, Nanotechnology 10 (1999) 269–272.

DOI: 10.1088/0957-4484/10/3/308

Google Scholar

[11] J. S. Wu, W. Pisula, K. Müllen, Graphenes as Potential Material for Electronics, Chem. Rev. 107 (2007) 718–747.

DOI: 10.1021/cr068010r

Google Scholar

[12] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228–240.

DOI: 10.1039/b917103g

Google Scholar

[13] S. Z. Zu, B. H. Han, Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers: Formation of Supramolecular Hydrogel, J. Phys. Chem. C 113 (2009) 13651–13657.

DOI: 10.1021/jp9035887

Google Scholar

[14] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide , J. Phys. Chem. B 110 (2006).

DOI: 10.1021/jp060936f

Google Scholar

[15] Y. Y. Liang, D. Q. Wu, X. L. Feng, K. Mullen, Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions, Adv. Mater. 21 (2009) 1679–1683.

DOI: 10.1002/adma.200803160

Google Scholar

[16] M. Fang, K. G. Wang, H. B. Lu, Y. L. Yang, S. Nutt, Single-layer graphene nanosheets with controlled grafting of polymerchains, J. Mater. Chem. 20(2010) 1982-(1992).

DOI: 10.1039/b919078c

Google Scholar

[17] M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev. 39 (2010) 4146-4157.

Google Scholar

[18] C. Xu, X. Wang, Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates, Small 5 (2009) 2212-2217.

DOI: 10.1002/smll.200900548

Google Scholar

[19] Z. Q. Zhang, Y. H. Wu, Investigation of the NaBH4-Induced Aggregation of Au Nanoparticles, Langmuir 26 (2010) 9214-9223.

DOI: 10.1021/la904410f

Google Scholar

[20] Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon 48 (2010) 1124-1130.

DOI: 10.1016/j.carbon.2009.11.034

Google Scholar

[21] Z.Y. Ji, J.L. Wu, X.P. Shen, H. Zhou, H.T. Xi, Preparation and characterization of graphene/NiO Nanocomposites, J. Mater. Sci. 46 (2011) 1190-1195.

DOI: 10.1007/s10853-010-4892-7

Google Scholar

[22] J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci. 256 (2010) 2826-2830.

DOI: 10.1016/j.apsusc.2009.11.034

Google Scholar

[23] D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I. A. Aksay, J. Liu, Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion, ACS Nano 3 (2009) 907 -914.

DOI: 10.1021/nn900150y

Google Scholar

[24] S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene Oxide-MnO2 Nanocomposites for Supercapacitors, ACS Nano 4 (2009) 2822-2830.

DOI: 10.1021/nn901311t

Google Scholar

[25] B. Fang, Y. Wei, M. Li, G. Wang, W. Zhang, Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate, Talanta 72 (2007) 1302–1306.

DOI: 10.1016/j.talanta.2007.01.039

Google Scholar

[26] J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, D. Wang, Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan, Biosensors and Bioelectronics 42 (2013) 198–206.

DOI: 10.1016/j.bios.2012.10.029

Google Scholar

[27] W. Yu, H. Zhang, G. Chen, C. Tu, P. Ouyang, Novel Method for Spectrophotometric Determination of L-Tryptophan in the Enzymatic Resolution of DL-N-Acetyl-Tryptophan, Microchimca Acta 146 (2004) 285–290.

DOI: 10.1007/s00604-004-0180-z

Google Scholar

[28] D.M. Reynolds, Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy, Water Research 37 (2003) 3055–3060.

DOI: 10.1016/s0043-1354(03)00153-2

Google Scholar

[29] Z.J. Lin, X.M. Chen, Z.M. Cai, P.W. Li, X. Chen, X.R. Wang, Chemiluminescence of tryptophan and histidine in Ru(bpy)32+-KMnO4 aqueous solution, Talanta 75 (2008) 544–550.

DOI: 10.1016/j.talanta.2007.11.049

Google Scholar

[30] M.A. Malone, H. Zuo, S.M. Lunte, M.R. Smyth, Determination of tryptophan and kynurenine in brain microdialysis samples by capillary electrophoresis with electrochemical detection, Journal of Chromatography A 700 (1995) 73–80.

DOI: 10.1016/0021-9673(94)01191-g

Google Scholar

[31] W. Lian, D.J. Ma, X. Xu, Y. Chen, Y.L. Wu, Rapid high-performance liquid chromatography method for determination of tryptophan in gastric juice, Journal of Digestive Diseases 13(2012) 100–106.

DOI: 10.1111/j.1751-2980.2011.00559.x

Google Scholar

[32] G.G. Huang, M.L. Cheng, J. Yang, Metal Ion-Assisted Infrared Optical Sensor for Selective Determination of Tryptophan in Urine Samples 2011. Journal of the Chinese Chemical Society 58, 435–442.

DOI: 10.1002/jccs.201190003

Google Scholar

[33] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles, Carbon 42 (2004) 2929–2937.

DOI: 10.1016/s0008-6223(04)00444-0

Google Scholar

[34] L. Fan, C. Luo, M. Sun, H. Qiu, Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal, J. Mater. Chem. 22 (2012) 24577–24583.

DOI: 10.1039/c2jm35378d

Google Scholar

[35] Y. Wang, S. Gao, X. Zang, J. Li, J. Ma, Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples, Analytica Chimica Acta 716 (2012).

DOI: 10.1016/j.aca.2011.12.007

Google Scholar

[36] Z.T. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, Higsh Yield Preparation of Macroscopic Graphene Oxide Membranes, Journal of the American Chemical Society, 131 (2009) 898-899.

DOI: 10.1021/ja807934n

Google Scholar

[37] K. S. Kim, I. J. Kim, S. Park, Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites, Synth Met. 160 (2010) 2355–2360.

DOI: 10.1016/j.synthmet.2010.09.011

Google Scholar

[38] J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, Graphene Oxide Dispersions in Organic Solvents, Langmuir 24 (2008) 10560–10564.

DOI: 10.1021/la801744a

Google Scholar