[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197-200.
DOI: 10.1038/nature04233
Google Scholar
[2]
W. Choi, I. Lahiri, R. Seelaboyina, Y. S. Kang, Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences 35 (2010) 52–71.
DOI: 10.1080/10408430903505036
Google Scholar
[3]
D. A. Areshkin, C. T. White, Building Blocks for Integrated Graphene Circuits, Nano Lett. 7 (2007) 3253 -3259.
DOI: 10.1021/nl070708c
Google Scholar
[4]
G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis, Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage, Nano Lett. 8 (2008) 3166-3170.
DOI: 10.1021/nl801417w
Google Scholar
[5]
Y. Qian, Synthesis of Cuprous Oxide (Cu2O) Nanoparticles/Graphene Composite with an Excellent Electrocatalytic Activity Towards Glucose, Int. J. Electrochem. Sci. 7 (2012) 10063-10073.
Google Scholar
[6]
H.L. Wang, Y. Y. Liang, T. Mirfakhrai, Z. Chen, H. S. Casalongue, H. J. Dai, Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials, Nano Res. 4 (2011) 729-736.
DOI: 10.1007/s12274-011-0129-6
Google Scholar
[7]
X. Zhao, Q. H. Zhang, D. J. Chen, Enhanced Mechanical Properties of Graphene-Based Poly (vinyl alcohol) Composites, Macromolecules 43 (2010) 2357-2363.
DOI: 10.1021/ma902862u
Google Scholar
[8]
S. Park, R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 29 (2009) 217–224.
Google Scholar
[9]
F. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009)706–710.
DOI: 10.1038/nature07719
Google Scholar
[10]
X. Lu, M. Yu, H. Huang, R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets, Nanotechnology 10 (1999) 269–272.
DOI: 10.1088/0957-4484/10/3/308
Google Scholar
[11]
J. S. Wu, W. Pisula, K. Müllen, Graphenes as Potential Material for Electronics, Chem. Rev. 107 (2007) 718–747.
DOI: 10.1021/cr068010r
Google Scholar
[12]
D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228–240.
DOI: 10.1039/b917103g
Google Scholar
[13]
S. Z. Zu, B. H. Han, Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers: Formation of Supramolecular Hydrogel, J. Phys. Chem. C 113 (2009) 13651–13657.
DOI: 10.1021/jp9035887
Google Scholar
[14]
H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide , J. Phys. Chem. B 110 (2006).
DOI: 10.1021/jp060936f
Google Scholar
[15]
Y. Y. Liang, D. Q. Wu, X. L. Feng, K. Mullen, Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions, Adv. Mater. 21 (2009) 1679–1683.
DOI: 10.1002/adma.200803160
Google Scholar
[16]
M. Fang, K. G. Wang, H. B. Lu, Y. L. Yang, S. Nutt, Single-layer graphene nanosheets with controlled grafting of polymerchains, J. Mater. Chem. 20(2010) 1982-(1992).
DOI: 10.1039/b919078c
Google Scholar
[17]
M. Pumera, Graphene-based nanomaterials and their electrochemistry, Chem. Soc. Rev. 39 (2010) 4146-4157.
Google Scholar
[18]
C. Xu, X. Wang, Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates, Small 5 (2009) 2212-2217.
DOI: 10.1002/smll.200900548
Google Scholar
[19]
Z. Q. Zhang, Y. H. Wu, Investigation of the NaBH4-Induced Aggregation of Au Nanoparticles, Langmuir 26 (2010) 9214-9223.
DOI: 10.1021/la904410f
Google Scholar
[20]
Y.J. Li, W. Gao, L.J. Ci, C.M. Wang, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon 48 (2010) 1124-1130.
DOI: 10.1016/j.carbon.2009.11.034
Google Scholar
[21]
Z.Y. Ji, J.L. Wu, X.P. Shen, H. Zhou, H.T. Xi, Preparation and characterization of graphene/NiO Nanocomposites, J. Mater. Sci. 46 (2011) 1190-1195.
DOI: 10.1007/s10853-010-4892-7
Google Scholar
[22]
J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci. 256 (2010) 2826-2830.
DOI: 10.1016/j.apsusc.2009.11.034
Google Scholar
[23]
D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L.V. Saraf, J. Zhang, I. A. Aksay, J. Liu, Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion, ACS Nano 3 (2009) 907 -914.
DOI: 10.1021/nn900150y
Google Scholar
[24]
S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene Oxide-MnO2 Nanocomposites for Supercapacitors, ACS Nano 4 (2009) 2822-2830.
DOI: 10.1021/nn901311t
Google Scholar
[25]
B. Fang, Y. Wei, M. Li, G. Wang, W. Zhang, Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate, Talanta 72 (2007) 1302–1306.
DOI: 10.1016/j.talanta.2007.01.039
Google Scholar
[26]
J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, D. Wang, Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan, Biosensors and Bioelectronics 42 (2013) 198–206.
DOI: 10.1016/j.bios.2012.10.029
Google Scholar
[27]
W. Yu, H. Zhang, G. Chen, C. Tu, P. Ouyang, Novel Method for Spectrophotometric Determination of L-Tryptophan in the Enzymatic Resolution of DL-N-Acetyl-Tryptophan, Microchimca Acta 146 (2004) 285–290.
DOI: 10.1007/s00604-004-0180-z
Google Scholar
[28]
D.M. Reynolds, Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy, Water Research 37 (2003) 3055–3060.
DOI: 10.1016/s0043-1354(03)00153-2
Google Scholar
[29]
Z.J. Lin, X.M. Chen, Z.M. Cai, P.W. Li, X. Chen, X.R. Wang, Chemiluminescence of tryptophan and histidine in Ru(bpy)32+-KMnO4 aqueous solution, Talanta 75 (2008) 544–550.
DOI: 10.1016/j.talanta.2007.11.049
Google Scholar
[30]
M.A. Malone, H. Zuo, S.M. Lunte, M.R. Smyth, Determination of tryptophan and kynurenine in brain microdialysis samples by capillary electrophoresis with electrochemical detection, Journal of Chromatography A 700 (1995) 73–80.
DOI: 10.1016/0021-9673(94)01191-g
Google Scholar
[31]
W. Lian, D.J. Ma, X. Xu, Y. Chen, Y.L. Wu, Rapid high-performance liquid chromatography method for determination of tryptophan in gastric juice, Journal of Digestive Diseases 13(2012) 100–106.
DOI: 10.1111/j.1751-2980.2011.00559.x
Google Scholar
[32]
G.G. Huang, M.L. Cheng, J. Yang, Metal Ion-Assisted Infrared Optical Sensor for Selective Determination of Tryptophan in Urine Samples 2011. Journal of the Chinese Chemical Society 58, 435–442.
DOI: 10.1002/jccs.201190003
Google Scholar
[33]
M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles, Carbon 42 (2004) 2929–2937.
DOI: 10.1016/s0008-6223(04)00444-0
Google Scholar
[34]
L. Fan, C. Luo, M. Sun, H. Qiu, Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal, J. Mater. Chem. 22 (2012) 24577–24583.
DOI: 10.1039/c2jm35378d
Google Scholar
[35]
Y. Wang, S. Gao, X. Zang, J. Li, J. Ma, Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples, Analytica Chimica Acta 716 (2012).
DOI: 10.1016/j.aca.2011.12.007
Google Scholar
[36]
Z.T. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, Higsh Yield Preparation of Macroscopic Graphene Oxide Membranes, Journal of the American Chemical Society, 131 (2009) 898-899.
DOI: 10.1021/ja807934n
Google Scholar
[37]
K. S. Kim, I. J. Kim, S. Park, Influence of Ag doped graphene on electrochemical behaviors and specific capacitance of polypyrrole-based nanocomposites, Synth Met. 160 (2010) 2355–2360.
DOI: 10.1016/j.synthmet.2010.09.011
Google Scholar
[38]
J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, Graphene Oxide Dispersions in Organic Solvents, Langmuir 24 (2008) 10560–10564.
DOI: 10.1021/la801744a
Google Scholar