[1]
P. B. Bhosale, R. V. Gadre: Production of β-carotene by a mutant of Rhodotorula glutinis. Applied and Environment Microbiology. 55(44). (2001), pp.423-427.
DOI: 10.1007/s002530000570
Google Scholar
[2]
E. D. Simova, G. I. Frengova, D. M. Beshkova: Synthesis of carotenoids by Rhodotorula rubra GED8 co-cultured with yogurt starter cultures in whey ultra-filtrate. Journal of Industrial Microbiology and Biotechnology. 31(3). (2004), p.115–121.
DOI: 10.1007/s10295-004-0122-0
Google Scholar
[3]
A. Çelekli, G. Dönmez. Effect of pH, light intensity, salt and nitrogen concentrations on growth and β-carotene accumulation by a new isolate of Dunaliella sp. World Journal of Microbiology and Biotechnology. 22 (2). (2006), pp.183-189.
DOI: 10.1007/s11274-005-9017-0
Google Scholar
[4]
P. B. Bhosale, R. V. Gadre. Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant32 of Rhodotorula glutinis. Letters in Applied Microbiology. 34 (5). (2002), pp.349-353.
DOI: 10.1046/j.1472-765x.2002.01095.x
Google Scholar
[5]
V. Perrier, E. Dubreucq, P. Galzy. Fatty acid and carotenoid composition of Rhodotorula strains. Archives of Microbiology. 164 (33). (1995), pp.173-179.
DOI: 10.1007/bf02529968
Google Scholar
[6]
S. L Wang, X. Z. Wu, L. H. Hao, J. S. Sun. Mutation effect of ultra high pressure on microbe. Acta Microbiologica Sinica (In Chinese). 45 (6). (2005), pp.970-973.
Google Scholar
[7]
L. Erijman, R. M. Clegg. Reversible stalling of transcription elongation complexes by high pressure. Biophysical Journal. 75 (1). (1998), pp.453-462.
DOI: 10.1016/s0006-3495(98)77533-2
Google Scholar
[8]
G. W. Niven, C. A. Miles, B. M. Mackey. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology (UK). 145 (2). (1999), pp.419-425.
DOI: 10.1099/13500872-145-2-419
Google Scholar
[9]
M. G. Ganzle, R. F. Vogel. On-line fluorescence determination of pressure mediated outer membrane damage in Escherichia coli. System Applied Microbiology. 24 (4). (2001) , pp.477-485.
DOI: 10.1078/0723-2020-00069
Google Scholar
[10]
M. Ritz, J. L. Tholozan, M. Federighi, M. F Pilet. Physiological damages of Listeria monocytogenes treated by high hydrostatic pressure. International Journal of Food Microbiology. 79 (1). (2002), pp.47-53.
DOI: 10.1016/s0168-1605(02)00178-2
Google Scholar
[11]
S. L. Wang, X. Z. Wu, X. C. Duan, J. S. Sun. Mutagenic effects of ultra high pressure on strains producing laccase. Industrial Microbiology (In Chinese). 36 (2). (2006), pp.31-35.
Google Scholar
[12]
S. Basak, H. S. Ramaswamya, J. P. G. Piette. High pressure destruction kinetics of Leuconostoc mesenteroides and Saccharomyces cerevisiae in single strength and concentrated orange juice. Innovative Food Science & Emerging Technologies. 3 (3). (2002).
DOI: 10.1016/s1466-8564(02)00008-5
Google Scholar
[13]
L. Wu, Z. L. Yu. Radiobiological effects of a low-energy ion beam on wheat. Radiation and Environmental Biophysics (In Chinese). 40 (1). (2001), pp.53-57.
DOI: 10.1007/s004110000078
Google Scholar
[14]
E. Y. Wuytack, A. M. J. Diels, C. W. Michiels. Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. International Journal of Food Microbiology. 77 (3). (2002), pp.205-212.
DOI: 10.1016/s0168-1605(02)00054-5
Google Scholar
[15]
H. Alpas, L. Alma, F. Bozoglu. Inactivation of Alicyclobacillus acidoterrestris vegetative cells in model system, apple, orange and tomato juices by high hydrostatic pressure. World Journal of Microbiology and Biotechnology. 19 (6). (2003).
Google Scholar
[16]
D. H. Bartlett, C. Kato, K. Horikoshi. High pressure influences on gene and protein expression. Research in Microbiology. 146 (8). (1995), pp.697-706.
DOI: 10.1016/0923-2508(96)81066-7
Google Scholar