Experimental Study on Effects of Feed per Tooth on Shear Angle and Friction Angle in Orthogonal Milling of Titanium Alloy

Article Preview

Abstract:

Shear angle and friction angle are the two characteristic parameters in orthogonal cutting model. This paper investigated effects of feed per tooth on shear angle and friction angle in orthogonal milling of titanium alloy Ti6Al4V by experimental approach. Three different straight tooth milling tool with different rake angles are used in this research. Experimental results reveals that in orthogonal milling of Ti6Al4V alloy, shear angle will decrease with increase of feed per tooth and friction angle will increase with increase of feed per tooth. And then variation of shear angle and friction angle affect the values of force coefficients. The experimental results provide deep understand of basic physical phenomenon in milling process and sheds light on more accurate cutting force modeling.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

1947-1951

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.O. Ezugwu and Z.M. Wang: J Mater Process Tech Vol. 68 (1997), p.262.

Google Scholar

[2] P.J. Arrazola, A. Garay, L.M. Iriarte, M. Armendia, S. Marya and F. Le Maître: J Mater Process Tech Vol. 209 (2009), p.2223.

DOI: 10.1016/j.jmatprotec.2008.06.020

Google Scholar

[3] J. Dhupia and I. Girsang: Mach Sci Technol Vol. 16 (2012), p.287.

Google Scholar

[4] E. Budak, Y. Altintas and E.J.A. Armarego: J Manuf Sci E-T ASME Vol. 118 (1996), p.216.

Google Scholar

[5] M.E. Merchant: J Appl Phys Vol. 16 (1945), p.267.

Google Scholar

[6] R.G. Fenton and P.L.B. Oxley: Proc Inst Mech Eng Vol. 184 (1969), p.927.

Google Scholar

[7] R.G. Fenton and P.L.B. Oxley: Proc Inst Mech Eng Vol. 183 (1968) p.417.

Google Scholar

[8] W.B. Palmer and P.L.B. Oxley: Proc Inst Mech Eng Vol. 173 (1959) p.623.

Google Scholar

[9] Z.C. Lin and Y.Y. Lin: J Mater Process Tech Vol. 86 (1998) p.119.

Google Scholar

[10] A. Moufki, A. Devillez, D. Dudzinski and A. Molinari: Int J Mach Tool Manu Vol. 44 (2004), p.971.

Google Scholar

[11] Y. Zheng, J.W. Sutherl and W.W. Olson: J Manuf Sci E-T ASME Vol. 6 (1997), p.61.

Google Scholar

[12] E. Budak and E. Ozlu: CIRP Ann-Manuf Techn Vol. 57 (2008), p.97.

Google Scholar

[13] P.W. Wallace and G. Boothroyd: J Mech Eng Sci Vol. 6 (1964), p.74.

Google Scholar

[14] X. Yang and C.R. Liu: Int J Mech Sci Vol. 44 (2002), p.703.

Google Scholar

[15] N. Fang: Wear Vol. 258 (2005), p.890.

Google Scholar

[16] Y. Altintas: Manufacturing automation: metal cutting mechanics, machine tool vibration, and CNC design (Cambridge University Press, Cambridge 2012).

DOI: 10.1017/cbo9780511843723

Google Scholar