Research on the Size Distribution of Intragranular and Boundary Carbides of T91 Steel after Creep

Article Preview

Abstract:

The high temperature crept tests of T91 steel have been conducted under two different stresses and temperatures. The single crystal electron diffraction is used to identify the precipitated phase structure. The quantity and size of carbides located in boundaries and intragranular area have been obtained by quantitative metallography, respectively. The results showed that the main precipitated carbides in T91 steel are M23C6(M=Fe,Cr) and V4C3, which is located in the grain and at the boundary of prior austenite respectively. In comparison with the carbides at boundary, the average size of intragranular carbides was smaller while the quantity is higher. The distribution of the carbides size crept with different stresses and temperatures is in accordance with a typical Boltzmann distribution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

198-205

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Viswanathan, J. Shingledecker, J. Hawk, Effect of Creep in Advanced Materials for Use in Ultrasupercritical Power Plants, ECCC Creep Conference, Zurich. (2009) 31–43.

Google Scholar

[2] B. Rukes, R. Taud, Status and Perspectives of Fossil Power Generation, Energy. 29 (2004) 1853–1874.

DOI: 10.1016/j.energy.2004.03.053

Google Scholar

[3] G. GUPTA and GARYS. WAS, Improved Behavior of Ferritic-Martensitic Alloy T91 by Subgrain Boundary Density Enhancement, Metall. Mater. Trans. A. 39 (2008) 150-164.

DOI: 10.1007/s11661-007-9411-3

Google Scholar

[4] Zhong Wanli, Li Zhenggang, Wang Wei, Evolution of High Temperature and Stress Time Effect On Microstructure And Properties of T91 Steels, Eng. J. Wuhan University. 45 (2012) 91-96.

Google Scholar

[5] K. Sawada, M. Tabuchi and K. Kimura, Degradation Mechanism of Creep Strength Enhanced Ferritic Steels for Power Plants, Mater. Challenges and Testing for Supply of Energy and Resources. (2012) 35-44.

DOI: 10.1007/978-3-642-23348-7_4

Google Scholar

[6] R.P. Chen, H. Ghassemi Armakia, K. Maruyamaa, M. Igarashib, Long-Term Microstructural Degradation and Creep Strength In Gr. 91 Steel, Mater. Sci. and Eng. A. 528 (2011) 4390–4394.

DOI: 10.1016/j.msea.2011.02.060

Google Scholar

[7] K. Sawadaa, H. Kushimab, M. Tabuchia, K. Kimurab, Microstructural Degradation of Gr. 91 Steel During Creep Under Low Stress, Mater. Sci. and Eng. A. 528 (2011) 5511–5518.

DOI: 10.1016/j.msea.2011.03.073

Google Scholar

[8] B. Sonderegger, S. Mitsche, H. Cerjak, Microstructural Analysis on A Creep Resistant Martensitic 9-12% Cr Steel Using the EBSD Method, Mater. Sci. and Eng. A. 481–482 (2008)466–470.

DOI: 10.1016/j.msea.2006.12.220

Google Scholar

[9] K. Sawada, H. Kushima, K. Kimura and M. Tabuchi, Z-Phase Formation and Its Effect On Long-Term Creep Strength in 9–12%Cr Creep Resistant Steels, Trans. of The Indian Institute of Met. 63 (2010) 117-122.

DOI: 10.1007/s12666-010-0016-y

Google Scholar

[10] A. Aghajani, C. Somsen, G. Eggeler, On The Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel, Acta Mater. 57 (2009)5093.

DOI: 10.1016/j.actamat.2009.07.010

Google Scholar

[11] A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach, G. Eggeler, How Dislocation Substructures Evolve During Long-Term Creep Of A 12% Cr Tempered Martensitic Ferritic Steel, Scr. Mater. 61 (2009) 1068.

DOI: 10.1016/j.scriptamat.2009.10.037

Google Scholar

[12] WAN Qiang, HU Wenlong, Microstructure Evolution of T91 Heat-Resistant Steels after Long-Time Aging, Wuhan University J. of Nature Sci. 18-1 (2013) 150—164.

DOI: 10.1007/s11859-013-0896-x

Google Scholar

[13] Yu Zaisong, Liu Jiangnan, Wang Zhengpin, Analysis on Ripening of Carbides during Service of T91 Steel, Foundary Technology. 28-5 (2007) 635-638.

Google Scholar

[14] N. Zavaleta Gutiérreza, H. De Ciccoa, J. Marrerob, C.A. Danóna, M.I. Luppoa, Evolution Of Precipitated Phases During Prolonged Tempering in A 9%Cr1%MoVNb Ferritic–Martensitic Steel: Influence on Creep Performance, Mater. Sci. and Eng. A. 528 (2011).

DOI: 10.1016/j.msea.2011.01.116

Google Scholar

[15] A. Zieliňska-Lipiec, A. Czyrska-Filemonowicz, P.J. Enniset, The Influence of Heat Treatments on The Microstructure of 9% Chromium Steels Containing Tungsten, Mater. Process. Technol. 64 (1997) 397–405.

DOI: 10.1016/s0924-0136(96)02591-5

Google Scholar

[16] K. Yamada, M. Igarashi, S. Muneki, Creep Properties Affected by Morphology of MX in High-Cr Ferritic Steels, F. Abe, ISIJ Int. 41 (2001) 116–120.

DOI: 10.2355/isijinternational.41.suppl_s116

Google Scholar

[17] Guo Kexin, Carbides in Alloy Steels, Acta Metall. Sinica. 2-3 (1957) 303-319.

Google Scholar

[18] V. SkleniČka, K. Kucharova, M. Svoboda, L. Kloc, J. Bursĭk, A. Kroupa, Long-Term Creep Behavior of 9–12%Cr Power Plant Steels, Mater. Charact. 51 (2003) 35– 48.

DOI: 10.1016/j.matchar.2003.09.012

Google Scholar

[19] Kuai Chuanguang, Peng Zhifang, Elemental Partitioning Characteristics and Stability of Equilibrium Phases During 450一1200℃ in T/P91 Steel, Acta Metall. Sinica. 44 (2008) 897-900.

Google Scholar

[20] China Iorn and Steel Association. GB/T 2039-2012, in press, Metallic Meterials-Uniaxial Creep Testing Method in Tension [S]. Beijing: China Standard Press, 2012(Ch).

Google Scholar

[21] E. A. TRILLO, L. E. MURR, A TEM Investigation of M23C6 Carbide Precipitation Behaviour on Varying Grain Boundary Misorientations in 304 Stainless Steels, J. Mater. Sci. 33 (1998) 1263- 1271.

DOI: 10.1023/a:1004390029071

Google Scholar

[22] X. Jia, Y. Dai, Mechanical Properties of Modified 9Cr–1Mo (T91) Irradiated at ⩽300 °C in SINQ Target-3, J. Nucl. Mater. 343 (2005) 212–218.

DOI: 10.1016/s0022-3115(03)00100-4

Google Scholar

[23] PENG Zhifang, Cai Lisheng, Peng Fangfang et al, Study on the Muti-Segment Feature of 625℃ Creep-Rupture Property and the Quantitative Change of Phase Parameter of M23C6 and Laves Phase of Each Segment of P92, Acta Metall. Sinica. 46 (2010).

Google Scholar

[24] M. Yoshizawa, M. Igarashi, Cr Concentration Dependence of Overestimation of Long Term Creep Life in Strength Enhanced High Cr Ferritic Steels, Int. J. Press. Vessels Pip. 84 (2007) 37–43.

DOI: 10.1016/j.ijpvp.2010.03.012

Google Scholar

[25] B. SKROTZKI, G.J. SHIFLET,E.A. STARKE, On the Effect of Stress on Nucleation and Growth of Precipitatesi in An Al-Cu-Mg-Ag Alloy, Metall. Mater. Trans. A. 27 (1996) 1996—3431.

DOI: 10.1007/bf02595436

Google Scholar

[26] ZhangYizeng, Liu Xiangjie, The Crack of Cardides in Carbon Steel with Spheroidization, Acta Metall. Sinica 21 (1985) 317-322.

Google Scholar

[27] Xiao Jimei, Alloy Phase and Phase Transition, 2nd ed., 309-310, Metallurgical Industry Press., Beijing, (2004).

Google Scholar

[28] Taketo Sakuma,The Growth of Carbides and Nitrides in Steel,Heat Treatment Technology And Equipment,1982-10-28, 3-11.

Google Scholar

[29] G. Dimmler, P. Weinert, E. Kozeschnik, H. Cerja, Quantification of the Laves Phase in Advanced 9–12% Cr Steels Using A Standard SEM, Mater. Charact. 51 (2003) 341– 352.

DOI: 10.1016/j.matchar.2004.02.003

Google Scholar

[30] Naqiong Zhu, Yanlin He, Wenqing Liu et al, Modeling of Nucleation and Growth of M23C6 Carbide in Multi-component Fe-based Alloy, J. Mater. Sci. Technol. 27-8 (2011) 725-728.

DOI: 10.1016/s1005-0302(11)60133-3

Google Scholar

[31] M. Yoshizawa, M. Igarashi, K. Moriguchi, et al, Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants, Mater. Sci. and Eng. A. 510-511 (2009) 162-168.

DOI: 10.1016/j.msea.2008.05.055

Google Scholar