[1]
R. Viswanathan, J. Shingledecker, J. Hawk, Effect of Creep in Advanced Materials for Use in Ultrasupercritical Power Plants, ECCC Creep Conference, Zurich. (2009) 31–43.
Google Scholar
[2]
B. Rukes, R. Taud, Status and Perspectives of Fossil Power Generation, Energy. 29 (2004) 1853–1874.
DOI: 10.1016/j.energy.2004.03.053
Google Scholar
[3]
G. GUPTA and GARYS. WAS, Improved Behavior of Ferritic-Martensitic Alloy T91 by Subgrain Boundary Density Enhancement, Metall. Mater. Trans. A. 39 (2008) 150-164.
DOI: 10.1007/s11661-007-9411-3
Google Scholar
[4]
Zhong Wanli, Li Zhenggang, Wang Wei, Evolution of High Temperature and Stress Time Effect On Microstructure And Properties of T91 Steels, Eng. J. Wuhan University. 45 (2012) 91-96.
Google Scholar
[5]
K. Sawada, M. Tabuchi and K. Kimura, Degradation Mechanism of Creep Strength Enhanced Ferritic Steels for Power Plants, Mater. Challenges and Testing for Supply of Energy and Resources. (2012) 35-44.
DOI: 10.1007/978-3-642-23348-7_4
Google Scholar
[6]
R.P. Chen, H. Ghassemi Armakia, K. Maruyamaa, M. Igarashib, Long-Term Microstructural Degradation and Creep Strength In Gr. 91 Steel, Mater. Sci. and Eng. A. 528 (2011) 4390–4394.
DOI: 10.1016/j.msea.2011.02.060
Google Scholar
[7]
K. Sawadaa, H. Kushimab, M. Tabuchia, K. Kimurab, Microstructural Degradation of Gr. 91 Steel During Creep Under Low Stress, Mater. Sci. and Eng. A. 528 (2011) 5511–5518.
DOI: 10.1016/j.msea.2011.03.073
Google Scholar
[8]
B. Sonderegger, S. Mitsche, H. Cerjak, Microstructural Analysis on A Creep Resistant Martensitic 9-12% Cr Steel Using the EBSD Method, Mater. Sci. and Eng. A. 481–482 (2008)466–470.
DOI: 10.1016/j.msea.2006.12.220
Google Scholar
[9]
K. Sawada, H. Kushima, K. Kimura and M. Tabuchi, Z-Phase Formation and Its Effect On Long-Term Creep Strength in 9–12%Cr Creep Resistant Steels, Trans. of The Indian Institute of Met. 63 (2010) 117-122.
DOI: 10.1007/s12666-010-0016-y
Google Scholar
[10]
A. Aghajani, C. Somsen, G. Eggeler, On The Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel, Acta Mater. 57 (2009)5093.
DOI: 10.1016/j.actamat.2009.07.010
Google Scholar
[11]
A. Aghajani, F. Richter, C. Somsen, S.G. Fries, I. Steinbach, G. Eggeler, How Dislocation Substructures Evolve During Long-Term Creep Of A 12% Cr Tempered Martensitic Ferritic Steel, Scr. Mater. 61 (2009) 1068.
DOI: 10.1016/j.scriptamat.2009.10.037
Google Scholar
[12]
WAN Qiang, HU Wenlong, Microstructure Evolution of T91 Heat-Resistant Steels after Long-Time Aging, Wuhan University J. of Nature Sci. 18-1 (2013) 150—164.
DOI: 10.1007/s11859-013-0896-x
Google Scholar
[13]
Yu Zaisong, Liu Jiangnan, Wang Zhengpin, Analysis on Ripening of Carbides during Service of T91 Steel, Foundary Technology. 28-5 (2007) 635-638.
Google Scholar
[14]
N. Zavaleta Gutiérreza, H. De Ciccoa, J. Marrerob, C.A. Danóna, M.I. Luppoa, Evolution Of Precipitated Phases During Prolonged Tempering in A 9%Cr1%MoVNb Ferritic–Martensitic Steel: Influence on Creep Performance, Mater. Sci. and Eng. A. 528 (2011).
DOI: 10.1016/j.msea.2011.01.116
Google Scholar
[15]
A. Zieliňska-Lipiec, A. Czyrska-Filemonowicz, P.J. Enniset, The Influence of Heat Treatments on The Microstructure of 9% Chromium Steels Containing Tungsten, Mater. Process. Technol. 64 (1997) 397–405.
DOI: 10.1016/s0924-0136(96)02591-5
Google Scholar
[16]
K. Yamada, M. Igarashi, S. Muneki, Creep Properties Affected by Morphology of MX in High-Cr Ferritic Steels, F. Abe, ISIJ Int. 41 (2001) 116–120.
DOI: 10.2355/isijinternational.41.suppl_s116
Google Scholar
[17]
Guo Kexin, Carbides in Alloy Steels, Acta Metall. Sinica. 2-3 (1957) 303-319.
Google Scholar
[18]
V. SkleniČka, K. Kucharova, M. Svoboda, L. Kloc, J. Bursĭk, A. Kroupa, Long-Term Creep Behavior of 9–12%Cr Power Plant Steels, Mater. Charact. 51 (2003) 35– 48.
DOI: 10.1016/j.matchar.2003.09.012
Google Scholar
[19]
Kuai Chuanguang, Peng Zhifang, Elemental Partitioning Characteristics and Stability of Equilibrium Phases During 450一1200℃ in T/P91 Steel, Acta Metall. Sinica. 44 (2008) 897-900.
Google Scholar
[20]
China Iorn and Steel Association. GB/T 2039-2012, in press, Metallic Meterials-Uniaxial Creep Testing Method in Tension [S]. Beijing: China Standard Press, 2012(Ch).
Google Scholar
[21]
E. A. TRILLO, L. E. MURR, A TEM Investigation of M23C6 Carbide Precipitation Behaviour on Varying Grain Boundary Misorientations in 304 Stainless Steels, J. Mater. Sci. 33 (1998) 1263- 1271.
DOI: 10.1023/a:1004390029071
Google Scholar
[22]
X. Jia, Y. Dai, Mechanical Properties of Modified 9Cr–1Mo (T91) Irradiated at ⩽300 °C in SINQ Target-3, J. Nucl. Mater. 343 (2005) 212–218.
DOI: 10.1016/s0022-3115(03)00100-4
Google Scholar
[23]
PENG Zhifang, Cai Lisheng, Peng Fangfang et al, Study on the Muti-Segment Feature of 625℃ Creep-Rupture Property and the Quantitative Change of Phase Parameter of M23C6 and Laves Phase of Each Segment of P92, Acta Metall. Sinica. 46 (2010).
Google Scholar
[24]
M. Yoshizawa, M. Igarashi, Cr Concentration Dependence of Overestimation of Long Term Creep Life in Strength Enhanced High Cr Ferritic Steels, Int. J. Press. Vessels Pip. 84 (2007) 37–43.
DOI: 10.1016/j.ijpvp.2010.03.012
Google Scholar
[25]
B. SKROTZKI, G.J. SHIFLET,E.A. STARKE, On the Effect of Stress on Nucleation and Growth of Precipitatesi in An Al-Cu-Mg-Ag Alloy, Metall. Mater. Trans. A. 27 (1996) 1996—3431.
DOI: 10.1007/bf02595436
Google Scholar
[26]
ZhangYizeng, Liu Xiangjie, The Crack of Cardides in Carbon Steel with Spheroidization, Acta Metall. Sinica 21 (1985) 317-322.
Google Scholar
[27]
Xiao Jimei, Alloy Phase and Phase Transition, 2nd ed., 309-310, Metallurgical Industry Press., Beijing, (2004).
Google Scholar
[28]
Taketo Sakuma,The Growth of Carbides and Nitrides in Steel,Heat Treatment Technology And Equipment,1982-10-28, 3-11.
Google Scholar
[29]
G. Dimmler, P. Weinert, E. Kozeschnik, H. Cerja, Quantification of the Laves Phase in Advanced 9–12% Cr Steels Using A Standard SEM, Mater. Charact. 51 (2003) 341– 352.
DOI: 10.1016/j.matchar.2004.02.003
Google Scholar
[30]
Naqiong Zhu, Yanlin He, Wenqing Liu et al, Modeling of Nucleation and Growth of M23C6 Carbide in Multi-component Fe-based Alloy, J. Mater. Sci. Technol. 27-8 (2011) 725-728.
DOI: 10.1016/s1005-0302(11)60133-3
Google Scholar
[31]
M. Yoshizawa, M. Igarashi, K. Moriguchi, et al, Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants, Mater. Sci. and Eng. A. 510-511 (2009) 162-168.
DOI: 10.1016/j.msea.2008.05.055
Google Scholar