[1]
M. Jolgaf, A. M. S. Hamouda, S. Sulaiman and M. M. Hamdan: Development of CAD/CAM system for the closed die-forging process, Journal of Materials Processing Technology Vol. 138 (2003), pp.436-442.
DOI: 10.1016/s0924-0136(03)00113-4
Google Scholar
[2]
J. C. Chiou: Floor, wall and ceiling approach for ball-end tool pocket machining, Computer Aided Design Vol. 37 (2005), pp.373-385.
DOI: 10.1016/j.cad.2004.06.013
Google Scholar
[3]
H. Shin, J. G. Olling, Y. C. Chung, B. H. Kim and S. K. Cho: An integrated CAPP / CAM system for stamping die pattern machining, Computer Aided Design Vol. 35 (2003), pp.203-213.
DOI: 10.1016/s0010-4485(02)00053-2
Google Scholar
[4]
J. Jambor: Quality of Production Process with CAD/CAM system Support, DAAAM International Scientific Book Vol. 11 (2012), pp.277-286.
DOI: 10.2507/daaam.scibook.2012.24
Google Scholar
[5]
S. Yue, G. Wang F. Yin I. Wang and J. Wang: Application of an integrated CAD/CAE/CAM system for die casting dies, Journal of Materials Processing Technology Vol. 139 (2003), pp.465-468.
DOI: 10.1016/s0924-0136(03)00506-5
Google Scholar
[6]
Ch. Brecher, W. Lohse: Evaluation of tool path quality: User-assisted CAM for complex milling, CIRP Journal of Manufacturing Science and Technology Vol. 6 (2013), pp.233-245.
DOI: 10.1016/j.cirpj.2013.07.002
Google Scholar
[7]
J. H Kim, J. W. Park, and T. J. Ko: End mill design and machining via cutting simulation, Computer Aided Design Vol. 40 (2008), pp.324-333.
DOI: 10.1016/j.cad.2007.11.005
Google Scholar
[8]
H. Hanwu, W. Yueming: Web based virtual operating of CNC milling machine tools, Computers in Industry Vol. 60 (2009), pp.686-697.
DOI: 10.1016/j.compind.2009.05.009
Google Scholar
[9]
B. T. Sheen, Ch. F. You: Machining feature recognition and tool-path generation for 3-axis CNC milling, Computer Aided Design Vol. 38 (2006), pp.533-562.
DOI: 10.1016/j.cad.2005.05.003
Google Scholar
[10]
Ch. M. Chuang, H. T. Yau: A new approach to z-level contour machining of triangulated surface models using fillet end mills, Computer Aided Design Vol. 37 (2005) pp.1039-1051.
DOI: 10.1016/j.cad.2004.10.005
Google Scholar
[11]
S. Mann, S. Bedi, G. Israeli and X. Zhou: Machine design and tool motions for simulating five-axis machining, Computer Aided Design Vol. 42 (2010), pp.231-237.
DOI: 10.1016/j.cad.2009.11.005
Google Scholar
[12]
L. P. Zhang, J. Y. H. Fuh and A. Y. C. Nee: Tool path regeneration for mold design modification, Computer Aided Design Vol. 35 (2003), pp.813-823.
DOI: 10.1016/s0010-4485(02)00108-2
Google Scholar
[13]
P. Lu, G. Zhao, Y. Guan and X. Wu: Research on rigid/visco-plastic element-free Galerkin method and key simulation techniques for three dimensional bulk metal forming processes, International Journal of Advanced Manufacturing Technology Vol. 53 (2011).
DOI: 10.1007/s00170-010-2859-0
Google Scholar
[14]
D. N. Banabic, M. Vos: Modeling of the forming limit band – a new method to increase the robustness in the simulation of sheet metal forming processes, CIRP Annals - Manufacturing Technology Vol. 56 (2007) pp.249-252.
DOI: 10.1016/j.cirp.2007.05.058
Google Scholar
[15]
M. W. Fu, J. Lu and W. L. Chan: Die fatigue life improvement through the rational design of metal forming system, Journal of Materials Processing Technology Vol. 209 (2009), pp.1074-1084.
DOI: 10.1016/j.jmatprotec.2008.03.016
Google Scholar
[16]
P. Krajnik, J. Kopač: Modern machining of die and mold tools, Journal of Materials Processing Technology Vol. 157-158 (2004), pp.543-552.
DOI: 10.1016/j.jmatprotec.2004.07.146
Google Scholar
[17]
L. N. López de Lacalle, A. Lamikiz and J. Sánchez: Improving the surface finish in high speed milling of stamping dies, Journal of Materials Processing Technology Vol. 123 (2002), pp.292-302.
DOI: 10.1016/s0924-0136(02)00102-4
Google Scholar
[18]
H. Liu, J. Bao, Z. Xing, D. Zhang, B. Song and C. Lei: Modeling and FE simulation of quenchable high strength steels sheet metal hot forming process, Journal of Materials Engineering Performance Vol. 20 (2011), pp.894-902.
DOI: 10.1007/s11665-010-9713-2
Google Scholar
[19]
L. Tapie, B. Mawussi and A. Bernard: Topological model for machining of parts with complex shapes, Computers in Industry Vol. 63 (2012), pp.528-541.
DOI: 10.1016/j.compind.2012.02.005
Google Scholar
[20]
E. I. Heo, D. Merdol and Y. Altintas: High speed pocketing strategy, CIRP Journal of Manufacturing Science and Technology Vol. 3 (2010), pp.1-7.
DOI: 10.1016/j.cirpj.2010.06.006
Google Scholar
[21]
J. P. Urbanski, P. Koshy, R. C. Dewes and D. K. Aspinwall: High speed machining of moulds and dies for net shape manufacture, Materials & Design Vol. 21, (2000) pp.395-402.
DOI: 10.1016/s0261-3069(99)00092-8
Google Scholar
[22]
J. Vivancos, C J. Luis, J. Ortiz and H. Gonzáles: Analysis of factors affecting the high-speed side milling of hardened die steels, Journal of Materials Processing Technology Vol. 162-163 (2005), pp.696-701.
DOI: 10.1016/j.jmatprotec.2005.02.155
Google Scholar
[23]
F. Taylan, O. Colak, and M. C. Kaycacan: Investigation of TiN Coated CBN and CBN Cutting Tool Performance in Hard Milling Application, Strojniški vestnik - Journal of Mechanical Engineering Vol. 57 (2011), pp.417-424.
DOI: 10.5545/sv-jme.2010.059
Google Scholar
[24]
P. Fallböhmer, C. A. Rodríguez, T. Özel, and T. Altan: High speed machining of cast iron and alloy steels for die and mold manufacturing, Journal of Materials Processing Technology Vol. 98 (2000), pp.104-115.
DOI: 10.1016/s0924-0136(99)00311-8
Google Scholar
[25]
B. Mawussi, L. Tapie: A knowledge base model for complex forging die machining, Computers & Industrial Engineering Vol. 61 (2011), pp.84-97.
DOI: 10.1016/j.cie.2011.02.016
Google Scholar
[26]
C. K. Toh: Design, evaluation and optimization of cutter path strategies when high speed machining hardened mould and die materials, Materials and Design Vol. 26 (2005), pp.517-533.
DOI: 10.1016/j.matdes.2004.07.019
Google Scholar
[27]
M. Boujelbene, A. Moisan, N. Tounsi and B. Brenier: Productivity enhancement in dies and molds manufacturing by the use of C1 continuous tool path, Machine Tools & Manufacture Vol. 44 (2004), pp.101-107.
DOI: 10.1016/j.ijmachtools.2003.08.005
Google Scholar
[28]
I. Pahole, D. Studenčnik, K. Gotlih, M. Ficko and J. Balič: Influence of the Milling Strategy on the Durability of Forging Tools, Strojniški vestnik - Journal of Mechanical Engineering Vol. 57 (2011), pp.898-903.
DOI: 10.5545/sv-jme.2010.078
Google Scholar
[29]
C. Z. Chen, D. Song: A Practical Approach to Generating Accurate Iso-Cusped Tool Paths for Three Axis CNC milling of Sculptured Surface Parts, Journal of Manufacturing Processes Vol. 8 (2006), pp.29-38.
DOI: 10.1016/s1526-6125(06)70099-8
Google Scholar
[30]
J. Jambor, J. Majerik: Hard Die & Mould Milling Process with CAD/CAM System CATIA V5R18 Support, Annals of DAAAM for 2009 & Proceedings of the 20th International DAAAM Symposium Vol. 20 (2009), pp.1465-1467.
DOI: 10.2507/22nd.daaam.proceedings.232
Google Scholar
[31]
S. M. Afazov: Modeling and simulation of manufacturing process chains, CIRP Journal of Manufacturing Science and Technology Vol. 6 (2013), pp.70-77.
DOI: 10.1016/j.cirpj.2012.10.005
Google Scholar
[32]
D. Dimitrov, M. Saxer: Productivity Improvement of Tooling Manufacture through High Speed 5 Axis Machining, Procedia CIRP Vol. 1, (2012) pp.277-282.
DOI: 10.1016/j.procir.2012.04.050
Google Scholar
[33]
Z. H. Chen, C. Y. Tang and T. C. Lee: Simulation of strain localization in metal forming processes using bilinear mixing u/p elements, Journal of Materials Processing Technology Vol. 147 (2004), pp.286-291.
DOI: 10.1016/s0924-0136(03)00582-x
Google Scholar
[34]
Z. Y. Cai, S. H. Wang and M. Z. Li: Numerical simulation for the multi-point stretch forming process of sheet metal, Journal of Materials Processing Technology Vol. 209 (2009), pp.396-407.
DOI: 10.1016/j.jmatprotec.2008.02.010
Google Scholar