Modeling and Virtual Simulation of Hard Surface Milling and Forming Process Using Advanced CAE Systems

Article Preview

Abstract:

This paper presents the influence of modeling and simulation techniques for hard milling and forming. The aim of these simulations is the ability to optimize the manufacturing technologies even before the real production of its own tools, because their manufacturing process is very difficult in terms of production time, materials and other costs. The simulated results visualize roughing and finishing process of milling and generate tool-paths in CATIA V5. Simulation results of forming realized in PAM-Stamp 2G using a 3D model of the punch and the blank confirm the suitability of the proposed design of the forming tool. Finally, hard milling and forming simulations in CAE systems CATIA V5 and PAM-Stamp 2G were performed in order to determine and evaluation of suitability of the proposed shapes of the forming tool.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

2321-2331

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Jolgaf, A. M. S. Hamouda, S. Sulaiman and M. M. Hamdan: Development of CAD/CAM system for the closed die-forging process, Journal of Materials Processing Technology Vol. 138 (2003), pp.436-442.

DOI: 10.1016/s0924-0136(03)00113-4

Google Scholar

[2] J. C. Chiou: Floor, wall and ceiling approach for ball-end tool pocket machining, Computer Aided Design Vol. 37 (2005), pp.373-385.

DOI: 10.1016/j.cad.2004.06.013

Google Scholar

[3] H. Shin, J. G. Olling, Y. C. Chung, B. H. Kim and S. K. Cho: An integrated CAPP / CAM system for stamping die pattern machining, Computer Aided Design Vol. 35 (2003), pp.203-213.

DOI: 10.1016/s0010-4485(02)00053-2

Google Scholar

[4] J. Jambor: Quality of Production Process with CAD/CAM system Support, DAAAM International Scientific Book Vol. 11 (2012), pp.277-286.

DOI: 10.2507/daaam.scibook.2012.24

Google Scholar

[5] S. Yue, G. Wang F. Yin I. Wang and J. Wang: Application of an integrated CAD/CAE/CAM system for die casting dies, Journal of Materials Processing Technology Vol. 139 (2003), pp.465-468.

DOI: 10.1016/s0924-0136(03)00506-5

Google Scholar

[6] Ch. Brecher, W. Lohse: Evaluation of tool path quality: User-assisted CAM for complex milling, CIRP Journal of Manufacturing Science and Technology Vol. 6 (2013), pp.233-245.

DOI: 10.1016/j.cirpj.2013.07.002

Google Scholar

[7] J. H Kim, J. W. Park, and T. J. Ko: End mill design and machining via cutting simulation, Computer Aided Design Vol. 40 (2008), pp.324-333.

DOI: 10.1016/j.cad.2007.11.005

Google Scholar

[8] H. Hanwu, W. Yueming: Web based virtual operating of CNC milling machine tools, Computers in Industry Vol. 60 (2009), pp.686-697.

DOI: 10.1016/j.compind.2009.05.009

Google Scholar

[9] B. T. Sheen, Ch. F. You: Machining feature recognition and tool-path generation for 3-axis CNC milling, Computer Aided Design Vol. 38 (2006), pp.533-562.

DOI: 10.1016/j.cad.2005.05.003

Google Scholar

[10] Ch. M. Chuang, H. T. Yau: A new approach to z-level contour machining of triangulated surface models using fillet end mills, Computer Aided Design Vol. 37 (2005) pp.1039-1051.

DOI: 10.1016/j.cad.2004.10.005

Google Scholar

[11] S. Mann, S. Bedi, G. Israeli and X. Zhou: Machine design and tool motions for simulating five-axis machining, Computer Aided Design Vol. 42 (2010), pp.231-237.

DOI: 10.1016/j.cad.2009.11.005

Google Scholar

[12] L. P. Zhang, J. Y. H. Fuh and A. Y. C. Nee: Tool path regeneration for mold design modification, Computer Aided Design Vol. 35 (2003), pp.813-823.

DOI: 10.1016/s0010-4485(02)00108-2

Google Scholar

[13] P. Lu, G. Zhao, Y. Guan and X. Wu: Research on rigid/visco-plastic element-free Galerkin method and key simulation techniques for three dimensional bulk metal forming processes, International Journal of Advanced Manufacturing Technology Vol. 53 (2011).

DOI: 10.1007/s00170-010-2859-0

Google Scholar

[14] D. N. Banabic, M. Vos: Modeling of the forming limit band – a new method to increase the robustness in the simulation of sheet metal forming processes, CIRP Annals - Manufacturing Technology Vol. 56 (2007) pp.249-252.

DOI: 10.1016/j.cirp.2007.05.058

Google Scholar

[15] M. W. Fu, J. Lu and W. L. Chan: Die fatigue life improvement through the rational design of metal forming system, Journal of Materials Processing Technology Vol. 209 (2009), pp.1074-1084.

DOI: 10.1016/j.jmatprotec.2008.03.016

Google Scholar

[16] P. Krajnik, J. Kopač: Modern machining of die and mold tools, Journal of Materials Processing Technology Vol. 157-158 (2004), pp.543-552.

DOI: 10.1016/j.jmatprotec.2004.07.146

Google Scholar

[17] L. N. López de Lacalle, A. Lamikiz and J. Sánchez: Improving the surface finish in high speed milling of stamping dies, Journal of Materials Processing Technology Vol. 123 (2002), pp.292-302.

DOI: 10.1016/s0924-0136(02)00102-4

Google Scholar

[18] H. Liu, J. Bao, Z. Xing, D. Zhang, B. Song and C. Lei: Modeling and FE simulation of quenchable high strength steels sheet metal hot forming process, Journal of Materials Engineering Performance Vol. 20 (2011), pp.894-902.

DOI: 10.1007/s11665-010-9713-2

Google Scholar

[19] L. Tapie, B. Mawussi and A. Bernard: Topological model for machining of parts with complex shapes, Computers in Industry Vol. 63 (2012), pp.528-541.

DOI: 10.1016/j.compind.2012.02.005

Google Scholar

[20] E. I. Heo, D. Merdol and Y. Altintas: High speed pocketing strategy, CIRP Journal of Manufacturing Science and Technology Vol. 3 (2010), pp.1-7.

DOI: 10.1016/j.cirpj.2010.06.006

Google Scholar

[21] J. P. Urbanski, P. Koshy, R. C. Dewes and D. K. Aspinwall: High speed machining of moulds and dies for net shape manufacture, Materials & Design Vol. 21, (2000) pp.395-402.

DOI: 10.1016/s0261-3069(99)00092-8

Google Scholar

[22] J. Vivancos, C J. Luis, J. Ortiz and H. Gonzáles: Analysis of factors affecting the high-speed side milling of hardened die steels, Journal of Materials Processing Technology Vol. 162-163 (2005), pp.696-701.

DOI: 10.1016/j.jmatprotec.2005.02.155

Google Scholar

[23] F. Taylan, O. Colak, and M. C. Kaycacan: Investigation of TiN Coated CBN and CBN Cutting Tool Performance in Hard Milling Application, Strojniški vestnik - Journal of Mechanical Engineering Vol. 57 (2011), pp.417-424.

DOI: 10.5545/sv-jme.2010.059

Google Scholar

[24] P. Fallböhmer, C. A. Rodríguez, T. Özel, and T. Altan: High speed machining of cast iron and alloy steels for die and mold manufacturing, Journal of Materials Processing Technology Vol. 98 (2000), pp.104-115.

DOI: 10.1016/s0924-0136(99)00311-8

Google Scholar

[25] B. Mawussi, L. Tapie: A knowledge base model for complex forging die machining, Computers & Industrial Engineering Vol. 61 (2011), pp.84-97.

DOI: 10.1016/j.cie.2011.02.016

Google Scholar

[26] C. K. Toh: Design, evaluation and optimization of cutter path strategies when high speed machining hardened mould and die materials, Materials and Design Vol. 26 (2005), pp.517-533.

DOI: 10.1016/j.matdes.2004.07.019

Google Scholar

[27] M. Boujelbene, A. Moisan, N. Tounsi and B. Brenier: Productivity enhancement in dies and molds manufacturing by the use of C1 continuous tool path, Machine Tools & Manufacture Vol. 44 (2004), pp.101-107.

DOI: 10.1016/j.ijmachtools.2003.08.005

Google Scholar

[28] I. Pahole, D. Studenčnik, K. Gotlih, M. Ficko and J. Balič: Influence of the Milling Strategy on the Durability of Forging Tools, Strojniški vestnik - Journal of Mechanical Engineering Vol. 57 (2011), pp.898-903.

DOI: 10.5545/sv-jme.2010.078

Google Scholar

[29] C. Z. Chen, D. Song: A Practical Approach to Generating Accurate Iso-Cusped Tool Paths for Three Axis CNC milling of Sculptured Surface Parts, Journal of Manufacturing Processes Vol. 8 (2006), pp.29-38.

DOI: 10.1016/s1526-6125(06)70099-8

Google Scholar

[30] J. Jambor, J. Majerik: Hard Die & Mould Milling Process with CAD/CAM System CATIA V5R18 Support, Annals of DAAAM for 2009 & Proceedings of the 20th International DAAAM Symposium Vol. 20 (2009), pp.1465-1467.

DOI: 10.2507/22nd.daaam.proceedings.232

Google Scholar

[31] S. M. Afazov: Modeling and simulation of manufacturing process chains, CIRP Journal of Manufacturing Science and Technology Vol. 6 (2013), pp.70-77.

DOI: 10.1016/j.cirpj.2012.10.005

Google Scholar

[32] D. Dimitrov, M. Saxer: Productivity Improvement of Tooling Manufacture through High Speed 5 Axis Machining, Procedia CIRP Vol. 1, (2012) pp.277-282.

DOI: 10.1016/j.procir.2012.04.050

Google Scholar

[33] Z. H. Chen, C. Y. Tang and T. C. Lee: Simulation of strain localization in metal forming processes using bilinear mixing u/p elements, Journal of Materials Processing Technology Vol. 147 (2004), pp.286-291.

DOI: 10.1016/s0924-0136(03)00582-x

Google Scholar

[34] Z. Y. Cai, S. H. Wang and M. Z. Li: Numerical simulation for the multi-point stretch forming process of sheet metal, Journal of Materials Processing Technology Vol. 209 (2009), pp.396-407.

DOI: 10.1016/j.jmatprotec.2008.02.010

Google Scholar