[1]
A.M. Druma, M.K. Alam and C. Druma, Analysis of thermal conduction in carbon foams, Int. J. Therm. Sci. 43 (2004) 689-695.
DOI: 10.1016/j.ijthermalsci.2003.12.004
Google Scholar
[2]
X. Wang, J. Zhong, Y. Wang and M. Yu, A study of the properties of carbon foam reinforced by clay, Carbon. 44 (2006) 1560-1564.
DOI: 10.1016/j.carbon.2005.12.025
Google Scholar
[3]
N.C. Gallego, J.W. Klett, Carbon foams for thermal management, Carbon. 41 (2003) 1461-1466.
DOI: 10.1016/s0008-6223(03)00091-5
Google Scholar
[4]
H. Shen, S. Nutt, Mechanical characterization of short fiber reinforced phenolic foam, Composites A. 34 (2003) 899-906.
DOI: 10.1016/s1359-835x(03)00136-2
Google Scholar
[5]
M. Liu, L. Gan and F. Zhao, Carbon foams with high compressive strength derived from polyarylacetylene resin, Carbon. 45 (2007) 3055-3057.
DOI: 10.1016/j.carbon.2007.10.003
Google Scholar
[6]
S. Lei, Q. Guo and J. Shi, Study on the heat treatment process of phenolic foam precursor, Journal of Materials Engineering. (2007) 216-220. (In Chinese).
Google Scholar
[7]
E. M. Wouterson, F. Y. C Boey and X. Hu, Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam, Polymer. 48 (2007) 3183-3191.
DOI: 10.1016/j.polymer.2007.03.069
Google Scholar
[8]
E. Bruneton, C. Tallaron, N. Gras-Naulin and A. Cosculluela, Evolution of the structure and mechanical behaviour of a carbon foam at very high temperatures, Carbon. 40 (2002) 1919-(1927).
DOI: 10.1016/s0008-6223(02)00003-9
Google Scholar
[9]
Y.W. Zhang, M. Jiang, J. X. Zhao and J. Y. Wang, Preparation of thermo-sensitive core-shell polymeric nanospheres via in situ, polymerization method, Acta Polym Sinica. (2007) 136 -143. (In Chinese).
Google Scholar
[10]
C. D. Liang and S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction, J. Am. Chem. Soc. 128 (2006) 5316-5317.
DOI: 10.1021/ja060242k
Google Scholar
[11]
Z. H. Min, M. Cao and S. Zhang, Effect of precursor on the pore structure of carbon foams, New Carbon Materials. 22 (2007) 75-79.
DOI: 10.1016/s1872-5805(07)60009-2
Google Scholar
[12]
R. Y. Luo,Y. F. Ni and J. S. Li, The mechanical and thermal insulating properties of resin-derived carbon foams reinforced by K2Ti6O13 whiskers, Mater. Sci. Eng. A. 528 (2011) 2023-(2027).
DOI: 10.1016/j.msea.2010.10.106
Google Scholar
[13]
L. Y. Zhang, J. Ma, Effect of coupling agent on mechanical properties of hollow carbonmicrosphere/phenolic resin syntactic foam, Compos. Sci. Technol. 70 (2010) 1265-1271.
DOI: 10.1016/j.compscitech.2010.03.016
Google Scholar
[14]
E. M. Wouterson, F. Boey and X. Hu, Specific properties and fracture toughness of syntactic foam: Effect of foam microstructures, Compos. Sci. Technol. 65 (2005) 1840-1850.
DOI: 10.1016/j.compscitech.2005.03.012
Google Scholar
[15]
N. Gupta, R. Maharsia, Enhancement of Energy Absorption in Syntactic Foams by Nanoclay Incorporation for Sandwich Core Applications, Appl. Compos. Mater. 12 (2005) 247-261.
DOI: 10.1007/s10443-005-1130-6
Google Scholar
[16]
B. Wang, H.J. Li and L.J. Guo, Preparation and properties of precursor of phenolic-based carbon foams, Journal of Solid Rocket Technology. 37 (2014) 113-117. (In Chinese).
Google Scholar
[17]
A. Celzard, W. Zhao and A. Pizzi, Mechanical properties of tannin-based rigid foams under-going compression, Mater. Sci. Eng. A. 527 (2010) 4438-4446.
DOI: 10.1016/j.msea.2010.03.091
Google Scholar
[18]
X. W. Wu, M. H. Fang and L. F. Mei, Effect of final pyrolysis temperature on the mechanical and thermal properties of carbon foams reinforced by aluminosilicate, Mater. Sci. Eng. A. 558 (2012) 446-450.
DOI: 10.1016/j.msea.2012.08.025
Google Scholar