A Comparison Study of the Effects of Ultrasonication on the Gelation Behavior between the Silk Fibroin of Domestic and Wild Silkworms

Article Preview

Abstract:

This paper was concerned with the effects of ultrasonication on the gelation behavior of silk fibroins (SF), and a comparison of Domestic and Wild silkworms was studied. The results show that: with the increase of ultrasonic power, the gelation time of domestic (Bombyx Mori) SF solution decreased sharply. But wild silkworms (Antheraea yamamai and Antheraea pernyi) SF were different, When the power of utrasonication was lower than 400-500 W, the velocity of gelation were accelerated, and when the ultrasonic power was higher than 400-500W, the gelation time were delayed. Whatever domestic or wild silkworms, the mechanism of the effects of ultrasonication on the gelation behavior was that the ultrasonication promoted the structural transformation of SF molecules from random coil or α-helix to β-sheet.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 941-944)

Pages:

989-993

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Zhao, X. Wu, Q. Zhang, S. Yan, and M. Li: International journal of biological macromolecules, vol. 48(2011), p.249.

Google Scholar

[2] M. Haider, Z. Megeed, and H. Ghandehari: Journal of Controlled Release, vol. 95(2004), p.1.

Google Scholar

[3] Z. Megeed, J. Cappello, and H. Ghandehari: Pharmaceutical research, vol. 19(2002), p.954.

Google Scholar

[4] T. Hanawa, A. Watanabe, T. Tsuchiya, R. Ikoma, M. Hidaka, and M. Sugihara: Chemical & pharmaceutical bulletin, vol. 43(1995), p.872.

DOI: 10.1248/cpb.43.872

Google Scholar

[5] N. Minoura, M. Tsukada, and M. Nagura: Biomaterials, vol. 11(1990), p.430.

Google Scholar

[6] R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V. Volloch, D. L. Kaplan, and G. H. Altman: Biomaterials, vol. 26(2005), p.3385.

DOI: 10.1016/j.biomaterials.2004.09.020

Google Scholar

[7] Z. H. Ayub, M. Arai, and K. Hirabayashi: Polymer, vol. 35(1994), p.2197.

Google Scholar

[8] X. Wang, J. A. Kluge, G. G. Leisk, and D. L. Kaplan: Biomaterials, vol. 29(2008), p.1054.

Google Scholar

[9] K. Hirabayashi, Z. Ayub, and Y. Kume: Sen-i Gakkaishi, vol. 46(1990), p.521.

Google Scholar

[10] Y. Wang, H. -J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan: Biomaterials, vol. 27(2006), p.6064.

Google Scholar

[11] T. Yucel, P. Cebe, and D. L. Kaplan: Biophysical journal, vol. 97(2009), p. (2044).

Google Scholar

[12] Y. Y. Wang, Y. D. Cheng, Y. Liu, H. J. Zhao, and M. Z. Li: Advanced Materials Research, vol. 175(2011), p.143.

Google Scholar

[13] M. Li, S. Lu, Z. Wu, H. Yan, J. Mo, and L. Wang: Journal of applied polymer science, vol. 79(2001), p.2185.

Google Scholar

[14] M. Li, Z. Wu, C. Zhang, S. Lu, H. Yan, D. Huang, and H. Ye: Journal of Applied Polymer Science, vol. 79(2001), p.2192.

Google Scholar

[15] M. Tsukada, Y. Gotoh, M. Nagura, N. Minoura, N. Kasai, and G. Freddi: Journal of Polymer Science Part B: Polymer Physics, vol. 32(1994), p.961.

DOI: 10.1002/polb.1994.090320519

Google Scholar

[16] H. Yoshimizu: Journal of applied polymer science, vol. 40(1990), p.1745.

Google Scholar