[1]
Lapin V.G., Lapin S.V. Volga Scientific Magazine. 2012. No. 2. Pp. 85-92.
Google Scholar
[2]
Facade insulation systems with air gap. Recommendations on the composition and content of the documents and materials submitted for the technical evaluation suitability of products . Moscow: Gosstroy. Russia. (2004).
Google Scholar
[3]
Petrochenko M.V. Fundamentals of hydraulic calculation free convection flow in building structures: Dissertation. Saint-Petersburg. Russia. 2012. 122 p.
Google Scholar
[4]
Petrichenko M.R., Petrochenko M.V. Magazine of Civil Engineering. 2011. No. 8. Pp. 51-56.
Google Scholar
[5]
Ayinde T. F. Experimental investigation of turbulent natural convection flow in a channel / T. F. Ayinde, S. A. M. Said, M. A. Habib / International Journal Heat Mass Transfer. – 2006. – Vol. 42. – P. 169-177.
DOI: 10.1007/s00231-005-0017-2
Google Scholar
[6]
Ayinde T. F. Turbulent natural convection flow in a vertical channel with anti-symmetric heating / T. F. Ayinde, S. A. M. Said, M. A. Habib / International Journal Heat Mass Transfer. – 2008. – Vol. 44. – P. 1207-1216.
DOI: 10.1007/s00231-007-0359-z
Google Scholar
[7]
Bodia J. R. The development of free convection between heated vertical plates / J. R. Bodia, J. F. Osterle / ASME Journal Heat Transfer. – 1962. – Vol. 84. – P. 40-44.
DOI: 10.1115/1.3684289
Google Scholar
[8]
Elenbaas W. Heat dissipation of Parallel plates by free Convection / Physica. – 1942. – Vol. 9. – P. 1-28.
DOI: 10.1016/s0031-8914(42)90053-3
Google Scholar
[9]
Fedorov A. G. Turbulent heat and mass transfer in an asymmetrically heated, vertical parallel plate channel / A. G. Fedorov, R. Viskanta, А. А. Mohamad / International Journal of Heat and Fluid Flow. – 1997. – Vol. 18. – Р. 307-315.
DOI: 10.1016/s0142-727x(97)00010-6
Google Scholar
[10]
Fedorov A. G. Turbulent natural convection heat transfer in an asymmetrically heated, vertical parallel-plate channel / A. G. Fedorov, R. Viskanta / International Journal of Heat and Mass Transfer. – 1997. – Vol. 40, No. 16. – Р. 3849-3860.
DOI: 10.1016/s0017-9310(97)00043-4
Google Scholar
[11]
Naylor D. A Numerical study of Developing Free convection Between Isothermal vertical plates / D. Naylor, J. M. Floryan, J. D. Tarasuk / Journal of Heat Transfer. – 1991. – Vol. 113. – Р. 620-626.
DOI: 10.1115/1.2910610
Google Scholar
[12]
Naylor D. Natural Convective Heat Transfer in a Divided vertical channel Part-I – Numerical Study / D. Naylor, J. D. Tarasuk / Journal of Heat Transfer. – 1993. – Vol. 115. – Р. 377-387.
DOI: 10.1115/1.2910689
Google Scholar
[13]
Sparrow E. M. Vertical channel natural convection spanning between fully-developed limit and the single-plate boundary-layer limit / E. M. Sparrow, L. F. A. Azevedo / International Journal Heat Mass Transfer. – 1985. – Vol. 28. – P. 1847-1857.
DOI: 10.1016/0017-9310(85)90207-8
Google Scholar
[14]
Tanda G. Natural Convection Heat Transfer in vertical channels with and without transverse square ribs / G. Tanda / International Journal of Heat Mass Transfer. – 1997. – Vol. 40, No. 9. – Р. 2173-2185.
DOI: 10.1016/s0017-9310(96)00246-3
Google Scholar
[15]
Turbulent Free Convection Heat Transfer From Vertical Parallel Plates / М. Miyamoto [et. al. ] / Heat Transfer, Proceeding of the International Heat Transfer : conference. – 1986. – Vol. 4. – Р. 1593-1598.
DOI: 10.1615/ihtc8.3200
Google Scholar
[16]
Turbulent natural convection in vertical parallel-plate channels / H. M. Badr [et. al. ] / International Journal Heat Mass Transfer. – 2006. – Vol. 43. – P. 73-84.
DOI: 10.1007/s00231-006-0084-z
Google Scholar
[17]
Velocity characteristics of turbulent natural convection in symmetrically and asymmetrically heated vertical channels / M. A. Habib [et. al. ] / Exp. Thermal Fluid Sci. – 2002. – Vol. 26. – Р. 77-87.
DOI: 10.1016/s0894-1777(02)00113-9
Google Scholar
[18]
Yilmaz T. Temperature and velocity field characteristics of turbulent natural convection in a vertical parallel-plate channel with asymmetric heating / Т. Yilmaz, А. Gilchrist / Heat Mass Transf. – 2007. – Vol. 43. – P. 707-719.
DOI: 10.1007/s00231-007-0234-y
Google Scholar
[19]
Recommendations for designing hinged facade systems with ventilated air gap for new construction and renovation projects. Moscow. Moscomarkhitektura. Russia. (2001).
Google Scholar
[20]
SP 23-101-2000 Design of thermal protection in buildings. Moscow: Gosstroy Russia. (2004).
Google Scholar
[21]
SNIP 23-02-2003 Thermal protection of buildings. Moscow. Russia. (2004).
Google Scholar
[22]
Technical regulations for the design, installation and operation of hinged facade systems, TR 161-05. Moscow. Russia. (2005).
Google Scholar
[23]
Petrichenko M.R. Scientific-technical Magazine. 2012 No. 2. Pp. 143-150.
Google Scholar
[24]
Strakhovich K.I. Hydro-gas dynamics: Selected works. Moscow. Russia. 1980. Pp. 102-105.
Google Scholar
[25]
Fabrikant N. Ya. Aerodinamics. Moscow. Russia. 1964. 275 p.
Google Scholar
[26]
Petrichenko M.R., Petrochenko M.V. Scientific-technical Magazine. 2012. No. 2. Pp. 276-282.
Google Scholar
[27]
Petrichenko M.R., Petrochenko M.V., Yavtushenko Y.B. Magazine of Civil Engineering. 2013. No. 2. Pp. 35-39.
Google Scholar