Diffused Structure of Drained and Back-Ventilated Rainscreen Claddings

Article Preview

Abstract:

The major problem in ventilation systems designing is an empiric range of parameters of an air cavity and rustics between cladding panels which results in unventilated layers emergence. Whereas insufficient air interchange causes icing of as substructure elements which come out into a ventilated air cavity as facing outer layer in winter period, and reducing of heat-protective properties of the structure in whole. The aim of this survey is to elaborate the methods meant for calculating the parameters of hydraulic airflow in a ventilated air cavity which allow determining rational and optimal dimensions of hydraulically optimal air cavity in rainscreens of buildings and other constructions. As an outcome it has been specified that it is necessary to design a ventilated rainscreen cladding with a ventilated air cavity expanding from bottom to top with the purpose to reduce the losses.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

1015-1022

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lapin V.G., Lapin S.V. Volga Scientific Magazine. 2012. No. 2. Pp. 85-92.

Google Scholar

[2] Facade insulation systems with air gap. Recommendations on the composition and content of the documents and materials submitted for the technical evaluation suitability of products . Moscow: Gosstroy. Russia. (2004).

Google Scholar

[3] Petrochenko M.V. Fundamentals of hydraulic calculation free convection flow in building structures: Dissertation. Saint-Petersburg. Russia. 2012. 122 p.

Google Scholar

[4] Petrichenko M.R., Petrochenko M.V. Magazine of Civil Engineering. 2011. No. 8. Pp. 51-56.

Google Scholar

[5] Ayinde T. F. Experimental investigation of turbulent natural convection flow in a channel / T. F. Ayinde, S. A. M. Said, M. A. Habib / International Journal Heat Mass Transfer. – 2006. – Vol. 42. – P. 169-177.

DOI: 10.1007/s00231-005-0017-2

Google Scholar

[6] Ayinde T. F. Turbulent natural convection flow in a vertical channel with anti-symmetric heating / T. F. Ayinde, S. A. M. Said, M. A. Habib / International Journal Heat Mass Transfer. – 2008. – Vol. 44. – P. 1207-1216.

DOI: 10.1007/s00231-007-0359-z

Google Scholar

[7] Bodia J. R. The development of free convection between heated vertical plates / J. R. Bodia, J. F. Osterle / ASME Journal Heat Transfer. – 1962. – Vol. 84. – P. 40-44.

DOI: 10.1115/1.3684289

Google Scholar

[8] Elenbaas W. Heat dissipation of Parallel plates by free Convection / Physica. – 1942. – Vol. 9. – P. 1-28.

DOI: 10.1016/s0031-8914(42)90053-3

Google Scholar

[9] Fedorov A. G. Turbulent heat and mass transfer in an asymmetrically heated, vertical parallel plate channel / A. G. Fedorov, R. Viskanta, А. А. Mohamad / International Journal of Heat and Fluid Flow. – 1997. – Vol. 18. – Р. 307-315.

DOI: 10.1016/s0142-727x(97)00010-6

Google Scholar

[10] Fedorov A. G. Turbulent natural convection heat transfer in an asymmetrically heated, vertical parallel-plate channel / A. G. Fedorov, R. Viskanta / International Journal of Heat and Mass Transfer. – 1997. – Vol. 40, No. 16. – Р. 3849-3860.

DOI: 10.1016/s0017-9310(97)00043-4

Google Scholar

[11] Naylor D. A Numerical study of Developing Free convection Between Isothermal vertical plates / D. Naylor, J. M. Floryan, J. D. Tarasuk / Journal of Heat Transfer. – 1991. – Vol. 113. – Р. 620-626.

DOI: 10.1115/1.2910610

Google Scholar

[12] Naylor D. Natural Convective Heat Transfer in a Divided vertical channel Part-I – Numerical Study / D. Naylor, J. D. Tarasuk / Journal of Heat Transfer. – 1993. – Vol. 115. – Р. 377-387.

DOI: 10.1115/1.2910689

Google Scholar

[13] Sparrow E. M. Vertical channel natural convection spanning between fully-developed limit and the single-plate boundary-layer limit / E. M. Sparrow, L. F. A. Azevedo / International Journal Heat Mass Transfer. – 1985. – Vol. 28. – P. 1847-1857.

DOI: 10.1016/0017-9310(85)90207-8

Google Scholar

[14] Tanda G. Natural Convection Heat Transfer in vertical channels with and without transverse square ribs / G. Tanda / International Journal of Heat Mass Transfer. – 1997. – Vol. 40, No. 9. – Р. 2173-2185.

DOI: 10.1016/s0017-9310(96)00246-3

Google Scholar

[15] Turbulent Free Convection Heat Transfer From Vertical Parallel Plates / М. Miyamoto [et. al. ] / Heat Transfer, Proceeding of the International Heat Transfer : conference. – 1986. – Vol. 4. – Р. 1593-1598.

DOI: 10.1615/ihtc8.3200

Google Scholar

[16] Turbulent natural convection in vertical parallel-plate channels / H. M. Badr [et. al. ] / International Journal Heat Mass Transfer. – 2006. – Vol. 43. – P. 73-84.

DOI: 10.1007/s00231-006-0084-z

Google Scholar

[17] Velocity characteristics of turbulent natural convection in symmetrically and asymmetrically heated vertical channels / M. A. Habib [et. al. ] / Exp. Thermal Fluid Sci. – 2002. – Vol. 26. – Р. 77-87.

DOI: 10.1016/s0894-1777(02)00113-9

Google Scholar

[18] Yilmaz T. Temperature and velocity field characteristics of turbulent natural convection in a vertical parallel-plate channel with asymmetric heating / Т. Yilmaz, А. Gilchrist / Heat Mass Transf. – 2007. – Vol. 43. – P. 707-719.

DOI: 10.1007/s00231-007-0234-y

Google Scholar

[19] Recommendations for designing hinged facade systems with ventilated air gap for new construction and renovation projects. Moscow. Moscomarkhitektura. Russia. (2001).

Google Scholar

[20] SP 23-101-2000 Design of thermal protection in buildings. Moscow: Gosstroy Russia. (2004).

Google Scholar

[21] SNIP 23-02-2003 Thermal protection of buildings. Moscow. Russia. (2004).

Google Scholar

[22] Technical regulations for the design, installation and operation of hinged facade systems, TR 161-05. Moscow. Russia. (2005).

Google Scholar

[23] Petrichenko M.R. Scientific-technical Magazine. 2012 No. 2. Pp. 143-150.

Google Scholar

[24] Strakhovich K.I. Hydro-gas dynamics: Selected works. Moscow. Russia. 1980. Pp. 102-105.

Google Scholar

[25] Fabrikant N. Ya. Aerodinamics. Moscow. Russia. 1964. 275 p.

Google Scholar

[26] Petrichenko M.R., Petrochenko M.V. Scientific-technical Magazine. 2012. No. 2. Pp. 276-282.

Google Scholar

[27] Petrichenko M.R., Petrochenko M.V., Yavtushenko Y.B. Magazine of Civil Engineering. 2013. No. 2. Pp. 35-39.

Google Scholar