Attacking a Measurement Device Independent Practical Quantum-Key-Distribution System with Wavelength-Dependent Beam-Splitter and Multi-Wavelength Sources

Article Preview

Abstract:

It is known that practical quantum key distribution system, because of the imperfect of devices, has sort of loopholes, so Eve can attack through these loopholes. The proposition of measurement device independent quantum key distribution protocol claimed to solve all the loopholes at the detector side. However the proof of MDI-QKD is based on the Hong-Ou-Mandel effect at 50:50 beam splitter. And with current experimental technology, a realistic beam splitter, made by fused biconical technology, has a wavelength-dependent property. Based on this fatal security loophole, the author propose a wavelength-dependent attacking protocol, which can be applied to practical MDI-QKD systems. Through this attacking protocol the author theoretical estimated that the eavesdropper could get 70% of the encoding information with a QBER of only 0.04.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

2277-2283

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Bennett and G. Brassard. Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalore (IEEE, New York), p.175–179 (1984).

Google Scholar

[2] D. Mayers, J. ACM 48, 351 (2001); H. -K. Lo and H. F. Chau, Science 283, 2050 (1999); P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

Google Scholar

[3] D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).

Google Scholar

[4] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,N. Lütkenhaus, and M. Peev, e-print arXiv: 0802. 4155.

DOI: 10.1103/revmodphys.81.1301

Google Scholar

[5] B. Huttner, N. Imoto, N. Gisin, and T. Mor, Phys. Rev. A 51, 1863 (1995).

Google Scholar

[6] G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000)].

Google Scholar

[7] Fung C H F, Qi B, Kiyoshi T, et al. Phase-remapping attack in practical quantum-key-distribution systems. Phys Rev A, 2007, 75(3): 032314.

DOI: 10.1103/physreva.75.032314

Google Scholar

[8] Xu F, Qi B, Lo H K. Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J Phys, 2010, 12: 113026.

DOI: 10.1088/1367-2630/12/11/113026

Google Scholar

[9] Sun S H, Gao M, Jiang M S, et al. Partially random phase attack to the practical two-way quantum-key-distribution system. Phys Rev A, 2012, 85(3): 032304.

DOI: 10.1103/physreva.85.032304

Google Scholar

[10] Sun S H, Jiang M S, Liang L M. Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system. Phys Rev A, 2011, 83(6): 062331.

DOI: 10.1103/physreva.83.062331

Google Scholar

[11] Li H W, Wang S, Huang J Z, et al. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multi-wavelength sources. Phys Rev A, 2011, 84(6): 062308.

DOI: 10.4028/www.scientific.net/amr.945-949.2277

Google Scholar

[12] Makarov V, Anisimov A, Skaar J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys Rev A, 2006, 74: 022313.

DOI: 10.1103/physreva.78.019905

Google Scholar

[13] Makarov V, Hjelme D R. Faked states attack on quantum cryptosystems. J Mod Opt, 2005, 52(5): 691–705.

DOI: 10.1080/09500340410001730986

Google Scholar

[14] Qi B, Fung C H F, Lo H K, et al. Time-shift attack in practical quantum cryptosystems. Quantum Inf Comput, 2007, 7: 73–82.

DOI: 10.26421/qic7.1-2-3

Google Scholar

[15] Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution.

DOI: 10.1103/physreva.78.042333

Google Scholar

[16] Phys. Rev. Lett. 98, 230501 (2007).

Google Scholar

[17] Lo, Hoi-Kwong, Marcos Curty, and Bing Qi. Measurement-device-independent quantum key distribution., Physical Review Letters 108. 13 (2012): 130503.

DOI: 10.1103/physrevlett.108.130503

Google Scholar

[18] A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, arXiv: 1304. 2463 (2013).

Google Scholar

[19] Y. Liuet al., arXiv: 1209. 6178 (2012).

Google Scholar

[20] Tang, Zhiyuan, et al. Experimental Demonstration of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution., arXiv preprint arXiv: 1306. 6134 (2013).

Google Scholar

[21] C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).

Google Scholar