[1]
ABRAS. Superhiper magazine. 2008 October edition. Available at: http: /www. abras. com. br/superhiper/superhiper/edicoes-anteriores/?publicacao=11, recovery in November, Vol. 27, (2009).
Google Scholar
[2]
IBGE (Instituto Brasileiro de Geografia e Estatística or Geographical and Statistics Brasilian Institute) (2007).
Google Scholar
[3]
H.K. Bhargava, S. Daewon and S.H. Xu. Stockout Compensation: Joint Inventory and Price Optimization in Electronic Retailing. Journal on Computing, Vol. 18, no. 2 (2006), p.255–266.
DOI: 10.1287/ijoc.1040.0091
Google Scholar
[4]
A. Fertis, M. Baes and H.J. Lüthi. Robust Risk Management. European Journal of Operational Research, Vol. 222, no. 3 (2012), pp.663-672.
DOI: 10.1016/j.ejor.2012.03.036
Google Scholar
[5]
E.T. Anderson, J.F. Gavan and D. Sismester. Measuring and Mitigating the Costs of Stockouts. Management Science, Vol. 52, no. 11 (2006), p.751–1763.
Google Scholar
[6]
L.H.R. Vasconcellos, M. Sampaio and R. Pastore. Retail Logistics: An analysis about stockouts question and its causes in the paulista supermarket under the business managers. Research and Publication Center. Publicity and Marketing Superior School, Research Report, São Paulo, SP, (2007).
Google Scholar
[7]
T.W. Gruen. Retail Stockoutss: A worldwide examination of extent causes, and consumer responses (and some solutions). RETECHCLA - Retail Technologies for Latin America, (2007b).
Google Scholar
[8]
D.S. Corsten and T.W. Gruen. Desperately Seeking Shelf Availability: An Examination of the Extent, the Causes, and the Efforts to Address Retail Stockoutss. International Journal of Retail & Distribution Management, Vol. 31, no. 12 (2003).
DOI: 10.1108/09590550310507731
Google Scholar
[9]
T.W. Gruen, D.S. Corsten and S.B. Sundar. Retail Stockouts: A Worldwide Examination of Extent, Causes and Consumer Responses, The Food Marketing Institute and CIES – The Food Business Forum, (2002).
Google Scholar
[10]
T.W. Gruen and D.S. Corsten. A Comprehensive Guide to Retail Stockouts Reduction In the Fast-Moving Consumer Goods Industry, University of Colorado. USA and Business School, Madrid, Espanha, (2007a).
Google Scholar
[11]
S.H. Elgazzar, N.S. Tipi, N.J. Hubbard and D.Z. Leach. Linking supply chain Processes' perfomance to a company's financial strategic objectives. European Journal of Operational Research, Vol. 223, no. 1 (2012), pp.276-289.
DOI: 10.1016/j.ejor.2012.05.043
Google Scholar
[12]
R.H. Ballou. Logistics Business: transportation, materials management and physical distribution, Prentice-Hall, 2nd. ed., the University of Michigan, (2007).
Google Scholar
[13]
W.K. Wong, M. Xia and W.C. Chu. Adaptive neural network model for time-series forecasting. European Journal of Operational Research, Vol. 207, no. 2 (2010), pp.807-816.
DOI: 10.1016/j.ejor.2010.05.022
Google Scholar
[14]
E.S. Garcia and V.J.M. Ferreira Filho. Calculation of the point of order based in forecasting of <Q, r> politics of management stocks. Operations Research, Vol. 29, no. 3 (2009), pp.605-622.
Google Scholar
[15]
M. Ghiassi and S. Nangoy. A dynamic artificial neural networks model for forecasting nonlinear processes. Computers & Industrial Engineering, Vol. 57, no. 1 (2009), pp.287-297.
DOI: 10.1016/j.cie.2008.11.027
Google Scholar
[16]
F.J. Chang, J.M. Liang and Y.C. Chen. Flood Forecasting Using Radial Basis Function Neural Networks. IEEE transactions on systems, man, and cybernetics - part C: applications and reviews, Vol. 31, no. 4 (2001), pp.530-535.
DOI: 10.1109/5326.983936
Google Scholar
[17]
F.Y. Partovi and M. Anandarajan. Classifying inventory using an artificial network approach, Computers & Industrial Engineering , Vol. 4, no. 4 (2002), pp.389-404.
DOI: 10.1016/s0360-8352(01)00064-x
Google Scholar
[18]
L.S. Coelho and A.A.P. Santos. A RBF neural network model with GARCH errors: Application to electricity price forecasting. Electric Power Systems Research, Vol. 81, no. 1 (2011), pp.74-83.
DOI: 10.1016/j.epsr.2010.07.015
Google Scholar
[19]
C. Hamzaçebi, D. Akay and F. Kutay. Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Systems with Applications, Vol. 36, no. 2 (2009), part 2, pp.3839-3844.
DOI: 10.1016/j.eswa.2008.02.042
Google Scholar
[20]
J.D. Wichard. Forecasting the NN5 time series with hybrid models. International Journal of Forecasting, Vol. 27, no. 3 (2011), pp.700-707.
DOI: 10.1016/j.ijforecast.2010.02.011
Google Scholar
[21]
J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F.J. Fernández and A.F. Díaz. Multiobjective Evolutionary Optimization of the Size, Shape, and Position Parameters of Radial Basis Function Networks for Function Approximation. IEEE Transactions on Neural Networks, Vol. 14, no. 6 (2006).
DOI: 10.1109/tnn.2003.820657
Google Scholar
[22]
S.B. Taieb, G. Bontempi, A.F. Atiya and A. Sorjamaa. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Systems with Applications, Vol. 39, no. 8 (2012).
DOI: 10.1016/j.eswa.2012.01.039
Google Scholar
[23]
B. Carse, A.G. Pipe, T.C. Fogarty and T. Hill. Evolving radial basis function neural networks using a genetic algorithm. IEEE International Conference on Evolutionary Computation, (2005), pp.300-305.
DOI: 10.1109/icec.1995.489163
Google Scholar
[24]
M. Gan, H. Peng and L. Chen. A global–local optimization approach to parameter estimation of RBF-type models. Information Sciences, Vol. 197 (2012), 144-160.
DOI: 10.1016/j.ins.2012.01.039
Google Scholar
[25]
M. Cruz-Ramírez, C. Hervás-Martínez, J.C. Fernández, J. Briceño and M. Mata. Multi-objective evolutionary algorithm for donor-recipient decision system in liver transplants. European Journal of Operational Research, Vol. 222, no. 2 (2012).
DOI: 10.1016/j.ejor.2012.05.013
Google Scholar
[26]
G.F. Lin and M.C. Wu. An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model. Journal of Hydrology, Vol. 405, no. 3–4 (2011), pp.439-450.
DOI: 10.1016/j.jhydrol.2011.05.042
Google Scholar
[27]
G. Sermpinis, K. Theofilatos, A. Karathanasopoulos, E.F. Georgopoulos and C. Dunis. Forecasting foreign Exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization. European Journal of Operational Research, Vol. 225, no. 3 (2013).
DOI: 10.1016/j.ejor.2012.10.020
Google Scholar
[28]
C.C. Lee, Y.C. Chiang, C.Y. Shih and C.L. Tsai. Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Systems with Applications, Vol. 36, no. 3 (2009).
DOI: 10.1016/j.eswa.2008.06.017
Google Scholar
[29]
W. Shen, X. Guo, C. Wu and D. Wu. Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, Vol. 24, no. 3 (2011), pp.378-385.
DOI: 10.1016/j.knosys.2010.11.001
Google Scholar
[30]
M. Gan, H. Peng and X.P. Dong. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction. Applied Mathematical Modelling, Vol. 36, no. 7 (2012), pp.2911-2919.
DOI: 10.1016/j.apm.2011.09.066
Google Scholar
[31]
C.M. Lee and C.N. Ko. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing, Vol. 73, no. 1–3 (2009), pp.449-460.
DOI: 10.1016/j.neucom.2009.07.005
Google Scholar
[32]
R. Ebrahimpour, H. Nikoo, S. Masoudnia, M.R. Yousefi and M.S. Ghaemi. Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange. International Journal of Forecasting, Vol. 27, no. 3 (2011), pp.804-816.
DOI: 10.1016/j.ijforecast.2010.02.015
Google Scholar