A Conceptual Knowledge-Link Model for Supporting Dental Implant Process

Article Preview

Abstract:

Computer aided techniques widely used as diagnostic and surgical procedures tools are scarcely applied in implantology, which continues using visualization of CT images to define the parameters for dental implant process leaving to the dentist discretion the implant determination, since only the images analysis is non-deterministic. Thus, this research proposes the development of a knowledge-link model integrated to a reasoner system to support dental implant process through information modeling. The system presents an interface that interacts with the user and consists of reasoning mechanisms connected by knowledge-links to a base of knowledge that enables information translation, conversion and sharing. The results obtained using the model showed that it is a valuable tool in the decisions making made by the surgeon in the dental implant planning process as it will be based on concrete and measurable data generated by the system through the analysis of the patient’s tomographic images and implants data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 945-949)

Pages:

3424-3429

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. D. Pye, D. E. A. Lockhart, M. P. Dawson, C. A. Murray, A. J. Smith: A review of dental implants and infection, Journal of Hospital infection, 72, 2, (2009), 104-110.

DOI: 10.1016/j.jhin.2009.02.010

Google Scholar

[2] A. Pyster and D. H Olwell (eds): The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 1. 2. Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed 18 mar 2014. Information on www. sebokwiki. org (2013).

Google Scholar

[3] C. E. Misch: Implantes Dentários Contemporâneos, 2ed, São Paulo: Santos Livraria Editora, (2000), 210-240.

Google Scholar

[4] C. G. Galanis, M. M. Sfantsikopoulos, P. T. Koidis, N. M. Kafantaris, P. G. Mpikos: Computer methods for automating preoperative dental implant planning: Implant positioning and size assignment, Computer Methods and Programs in Biomedicine, 86, (2006).

DOI: 10.1016/j.cmpb.2006.12.010

Google Scholar

[5] J. Brink, S. J. Meraw, D. P. Sarment: Influence of implant diameter on surrounding bone, Clinical Oral Implantology Res, 18, 1, (2007), 563-568.

DOI: 10.1111/j.1600-0501.2007.01283.x

Google Scholar

[6] J. H. Lee, V. Frias, K. W. Lee, R. F. Wright: Effect of implant size and shape on implant success rates: A literature review, Journal of Prosthetic Dentistry, 94, 1, (2005), 377-381.

DOI: 10.1016/j.prosdent.2005.04.018

Google Scholar

[7] J. M. Mahon, B. K. Norling, R. D. Phoenix: Effect of varying fixture width on stress and strain distribution associated with an implant stack system, Implant Dent, 9, 1, (2000), 310-320.

DOI: 10.1097/00008505-200009040-00006

Google Scholar

[8] M. Gruninger, K. Atefi, M. S. Fox: Ontologies to Support Process Integration in Enterprise Engineering, Computational and Mathematical Organization Theory, 6, 4, (2000), 381-394.

Google Scholar

[9] M. Rudek, O. Canciglieri Junior, T. Greboge: A PSO Application in Skull Prosthesis Modelling by Superellipse, ELCVIA, Electronic letters on computer vision and image analysis, 12, (2013), 1-12.

DOI: 10.5565/rev/elcvia.514

Google Scholar

[10] R. Assenciros: Fusão de imagens médicas para aplicação em sistemas de planejamento de tratamento em radioterapia, (2006), 140 f, Tese (Doutorado) – Instituto de pesquisas energéticas nucleares – Universidade de São Paulo, (2006).

DOI: 10.11606/t.85.2006.tde-04062007-141250

Google Scholar

[11] R. H. Wiggins, H. C. Davidson, H. R. Harnsberger, J. R. Lauman, P. A. Goede: Image file formats: Past, present, and future, RadioGraphics, 21, 2, (2001), 789-798.

DOI: 10.1148/radiographics.21.3.g01ma25789

Google Scholar

[12] R. N. J. Graham, R. W. Periss, A. F. Scarsbrook: DICOM demystified: A review of digital file formats and their use in radiological practice, Clinical Radiology, 60, 1, (2005), 1133-1140.

DOI: 10.1016/j.crad.2005.07.003

Google Scholar

[13] S. E. Duff, D. Murray, A. J. Rate, D. M. Richards, N. A. Kumar: Computed tomographic colonography (CTC) performance: one-year clinical follow-up, Clinical Radiology, 61, 11, (2006), 932-936.

DOI: 10.1016/j.crad.2006.06.004

Google Scholar

[14] S. Jing, F. He, S. Han, X. Cai, H. Liu: A method for topological entity correspondence in replicated collaborative CAD system, Computers in Industry, 60, 1, (2009), 467-475.

DOI: 10.1016/j.compind.2009.02.005

Google Scholar

[15] S. Jivraj, W. Chee: Rationale for dental implants, British Dental Journal, 200, 12, (2006), 661-665.

DOI: 10.1038/sj.bdj.4813718

Google Scholar

[16] T. Li, K. Hu, L. Cheng, Y. Ding, Y. Ding, J. Shao, L. Kong: Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – A 3D finite element analysis, Applied Mathematical Modelling, 35, (2010).

DOI: 10.1016/j.apm.2010.07.008

Google Scholar

[17] T. L. Roberts, W. Leigh, R. L. Purvis, and M. J. Parzinger: Utilizing knowledge links in the implementation of system development methodologies, Information and Software Technology, 43, 11, (2001), 635–640.

DOI: 10.1016/s0950-5849(01)00173-2

Google Scholar

[18] INCOSE, INCOSE Systems Engineering Handbook: A Guide for Life Cycle Processes and Activities, The International Council on Systems Engineering, C. Haskins, ed. 3, (2006).

Google Scholar

[19] A. L. Szejka, J. Pereira, M. Rudek, O. Canciglieri Jr., Methodological Proposal to Determine a Suitable Implant for a Single Dental Failure through CAD Geometric Modelling, 20th ISPE International Conference on Concurrent Engineering, Amsterdam: IOS Press BV, 1, 35, (2013).

Google Scholar

[20] A. L. Szejka, M. Rudek, O. Canciglieri Jr., A Reasoning System to Support the Dental Implant Planning Process, 19th ISPE International Conference on Concurrent Engineering, Trier: Springer, 2, 1, (2013), 909-920.

DOI: 10.1007/978-1-4471-4426-7_77

Google Scholar