Hyaluronic Acid Production by Genetic Modified GRAS Strains

Article Preview

Abstract:

Hyaluronic acid is an important polysaccharide of various physiological functions. Nowadays, it is produced mainly through microbial fermentation of Streptococcus zooepidemicus. HA production in more safe and efficient genetic modified GRAS strains is a hot research area. Bacillus subtilis, Lactococcus lactis, Streptococcus thermophiles, Agrobacterium sp. , and some Escherichia coli strains, which were GRAS strains, had been selected for genetic engineering to express hyaluronic acid. Here, we provide a comprehensive review of HA production by these genetic modified GRAS strains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.F. Chong, L.M. Blank, R. Mclaughlin and L.K. Nielsen: Appl. Microbiol. Biotechnol., Vol. 66 (2005) No. 4, p.341.

Google Scholar

[2] J.H. Kim, S.J. Yoo, D.K. Oh, Y.G. Kweon, D. W Park, C.H. Lee and G. H Gil: Enzyme Microb. Technol., Vol. 19 (1996) No. 6, p.440.

Google Scholar

[3] W.Y. Chen, E. Marcellin, J. Hung and L.K. Nielsen: J. Biol. Chem., Vol. 284 (2009) No. 27, p.18007.

Google Scholar

[4] L. Liu, G. Du, J. Chen, Y. Zhu, M. Wang and J. Sun: Bioresour. Technol., Vol. 100 (2009) No. 1, p.362.

Google Scholar

[5] L.M. Blank, R.L. Mclaughlin and L.K. Nielsen: Biotechnol. Bioeng., Vol. 90 (2005) No. 6, p.685.

Google Scholar

[6] X.J. Duan, L. Yang, X. Zhang and W.S. Tan: J. Microbiol. Biotechnol., Vol. 18 (2008) No. 4, p.718.

Google Scholar

[7] L. Liu, M. Wang, G. Du and J. Chen: Lett. Appl. Microbiol., Vol. 46 (2008) No. 3, p.383.

Google Scholar

[8] L. Liu, G. Du, J. Chen, M. Wang and J. Sun: Bioprocess Biosyst. Eng., Vol. 32 (2009) No. 6, p.755.

Google Scholar

[9] P.H. Weigel and P.L. Deangelis: J. Biol. Chem., Vol. 282 (2007) No. 51, p.36777.

Google Scholar

[10] S.H. Brown and P.E. Pummill: Curr. Pharm. Biotechnol., Vol. 9 (2008) No. 4, p.239.

Google Scholar

[11] L.J. Chien and C.K. Lee: Biotechnol. Prog., Vol. 23 (2007) No. 5, p.1017.

Google Scholar

[12] B. Widner, R. Behr, S. Von Dollen, M. Tang, T. Heu, A. Sloma, D. Sternberg, P.L. DeAngelis, P.H. Weigel and S. Brown: Appl. Environ. Microbiol., Vol. 71 (2005) No. 7, p.3747.

DOI: 10.1128/aem.71.7.3747-3752.2005

Google Scholar

[13] L.J. Chien and C.K. Lee: Appl. Microbiol. Biotechnol., Vol. 77 (2007) No. 2, p.339.

Google Scholar

[14] S.B. Prasad, G. Jayaraman and K.B. Ramachandran: Appl. Microbiol. Biotechnol., Vol. 86 (2010) No. 1, p.273.

Google Scholar

[15] J.Z. Sheng, P.X. Ling, X.Q. Zhu, X.P. Guo, T.M. Zhang, Y.L. He and F.S. Wang: J. Appl. Microbiol., Vol. 107 (2009) No. 1, p.136.

Google Scholar

[16] Z. Mao and R.R. Chen: Biotechnol. Prog., Vol. 23 (2007) No. 5, p.1038.

Google Scholar

[17] Z. Mao, H.D. Shin and R. Chen: Appl. Microbiol. Biotechnol., Vol. 84 (2009) No. 1, p.63.

Google Scholar

[18] H. Yu and G. Stephanopoulos: Metab. Eng., Vol. 10 (2008) No. 1, p.24.

Google Scholar

[19] N. Izawa, T. Hanamizu, R. Iizuka, T. Sone, H. Mizukoshi, K. Kimura and K. Chiba: J. Biosci. Bioeng., Vol. 107 (2009) No. 2, p.119.

DOI: 10.1016/j.jbiosc.2008.11.007

Google Scholar