Preparation of Doped Graphene Quantum Dots with Bright and Excitation-Independent Blue Fluorescence

Article Preview

Abstract:

Highly bright-fluorescent N (nitrogen), S (sulfur) co-doped graphene quantum dots (GQDs) were synthesized through an modified hydrothermal method. The doped GQDs are smaller than 10 nm in size in average and stable in aqueous solution. Unlike many reports on graphene oxide (GO), the as-synthesized doped GQDs exhibit bright blue photoluminescence (PL) emission and the emission wavelength is excitation-independent. The intriguling results indicate that GQDs may have great potential in the optic and optoelectronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-47

Citation:

Online since:

June 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Geim, K. S. Novoselov. Nature Mater., Vol. 6 (2007), p.183.

Google Scholar

[2] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim. Nature, Vol. 490 (2012), p.192.

DOI: 10.1038/nature11458

Google Scholar

[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Vol. 306 (2004), p.666.

DOI: 10.1126/science.1102896

Google Scholar

[4] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Vol. 1 (2008), p.203.

Google Scholar

[5] D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater., Vol. 22 (2010), p.734.

Google Scholar

[6] K. J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C. M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson, E. Rotenberg. ACS Nano, Vol. 5 (2011), p.1042.

DOI: 10.1021/nn1025274

Google Scholar

[7] Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, Z. Zhang. Chem. Comm., Vol. 46 (2010), p.7319.

Google Scholar

[8] H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto. Adv. Mater., Vol. 24 (2012), p.5333.

DOI: 10.1002/adma.201201930

Google Scholar

[9] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang. Chem. Comm. Vol. 47 (2011), p.5333.

Google Scholar

[10] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu. Adv. Mater., Vol. 23 (2011), p.776.

Google Scholar

[11] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong. Nano. Lett., Vol. 13 (2013), p.2436.

Google Scholar

[12] L. L. Li, J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang, J. J. Zhu. Adv. Funct. Mater., Vol. 22 (2012), p.2971.

Google Scholar

[13] Y. Dong, H. Pang, H. Yang, C. Guo, J. Shao, Y. Chi, C. Li, T. Yu. Angew. Chem. Int. Ed., Vol. 52 (2013), p.7800.

Google Scholar

[14] J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao. Angew. Chem. Int. Ed., Vol. 51 (2012), p.11496.

Google Scholar

[15] N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Chem. Mater., Vol. 11 (1999), p.771.

DOI: 10.1021/cm981085u

Google Scholar

[16] R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li. Angew. Chem. Int. Ed. Vol. 48 (2009), p.4598.

Google Scholar

[17] S. K. Cushing, M. Li, F. Huang, N. Wu. ACS Nano, Vol. 8 (2014), p.1002.

Google Scholar