Green Synthesis of Magnesium Oxide Nanoparticles

Article Preview

Abstract:

Nephelium lappaceum L. peels was effectively used for the synthesis of magnesium oxide nanoparticles as a natural ligation agent. The XRD and SEM revealed the crystallinity and spherical morphology of the biosynthesized nanoparticles. The size of the particles was found to be 60-70 nm as deduced from XRD and SEM analysis. The particle size of as-synthesized magnesium oxide powders measured by PSA was approximately 100 nm. The successful formation of magnesium oxide nanoparticles was confirmed employing XRD, SEM-EDX and PSA analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-144

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Raveendran, J. Fu, S.L. Wallen, A simple and green method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles, Green Chem. 8 (2006) 34-38.

DOI: 10.1039/b512540e

Google Scholar

[2] V. Armendariz, J.L. Gardea Torresdey, M. Jose Yacaman, J. Gonzalez, I. Herrera, J.G. Parsons, Proceedings of Conference on Application of Waste Remediation Technologies to Agricultural Contamination of Water Resources, Kansas City, Mo, USA, July– August (2002).

Google Scholar

[3] A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp., Langmuir 19 (2003) 3550-3553.

DOI: 10.1021/la026772l

Google Scholar

[4] A.R. Shahverdi, S. Minaeian, H.R. Shahverdi, H. Jamalifar, A.A. Nohi, Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach, Proc. Biochem. 42 (2007) 919-923.

DOI: 10.1016/j.procbio.2007.02.005

Google Scholar

[5] S. Shiv Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings, Chem. Mater. 17 (2005) 566-572.

DOI: 10.1021/cm048292g

Google Scholar

[6] S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract, Biotechnol. Prog. 22 (2006) 577-583.

DOI: 10.1021/bp0501423

Google Scholar

[7] N.A. Begum, S. Mondal, S. Basu, R.A. Laskar, D. Mandal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts, Colloids Surf. B: Biointer. 71 (2009)113-118.

DOI: 10.1016/j.colsurfb.2009.01.012

Google Scholar

[8] D. Philip, Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract, Spectrochimica. Acta Part A 73 (2009) 374-381.

DOI: 10.1016/j.saa.2009.02.037

Google Scholar

[9] K. Badri Narayanan, N. Sakthivel, Coriander leaf mediated biosynthesis of gold nanoparticles, Mat. Lett. 62 (2008) 4588-4590.

DOI: 10.1016/j.matlet.2008.08.044

Google Scholar

[10] D. Philip, Honey mediated green synthesis of gold nanoparticles, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 73 (2009) 650-653.

Google Scholar

[11] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf, Nanotechnology 18 (2007) 105104.

DOI: 10.1088/0957-4484/18/10/105104

Google Scholar

[12] M. Kursawe, R. Anselmann, V. Hilarius, G. Pfaff, Nanoparticles by wet chemical processing in commercial applications, J. Sol–Gel Sci. Technol. 33 (2005) 71-74.

DOI: 10.1007/s10971-005-6702-2

Google Scholar

[13] S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelnek, A. Gedanken, Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide, Adv. Funct. Mater. 15 (2005)1708-1715.

DOI: 10.1002/adfm.200500029

Google Scholar

[14] P.K. Stoimenov, R.L. Klinger, G.L. Marchin, K.J. Klabunde, Metal Oxide Nanoparticles as Bactericidal Agents, Langmuir 18 (2002) 6679-6686.

DOI: 10.1021/la0202374

Google Scholar

[15] R. Yuvakkumar, J. Suresh, A. Joseph Nathanael, M. Sundrarajan, S.I. Hong, A comparative study on antibacterial and wash durability behaviour of ZnO and CuO nanoparticles treated cotton fabric using sodium alginate as cross linker, Applied Mechanics and Materials 508 (2014).

DOI: 10.4028/www.scientific.net/amm.508.44

Google Scholar

[16] J. Suresh, R. Yuvakkumar, A. Joseph Nathanael, M. Sundrarajan, S.I. Hong, Antibacterial and wash durability properties of untreated and treated cotton fabric using MgO and NiO nanoparticles, Applied Mechanics and Materials 508 (2014) 48-51.

DOI: 10.4028/www.scientific.net/amm.508.48

Google Scholar

[17] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, A New Approach to Preparing Crystalline Nano Molybdenum Particles, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 41 (2011) 309–314.

DOI: 10.1080/15533174.2011.555864

Google Scholar

[18] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, P. Prabu, Influence of nano nutrients on heterocyst forming cyanobacterium Anabaena ambigua Rao, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 41 (2011).

DOI: 10.1080/15533174.2011.591875

Google Scholar

[19] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, High-purity nano silica powder from rice husk using a simple chemical method, Journal of Experimental Nanoscience 9 (2014) 272–281.

DOI: 10.1080/17458080.2012.656709

Google Scholar