[1]
T. Senjyu, K. Shimabukuro, K. Uezato, and T. Funabashi, A fast technique for unit commitment problem by extended priority list, IEEE Trans. power syst., vol. 18, no. 2, pp.882-888, (2003).
DOI: 10.1109/tpwrs.2003.811000
Google Scholar
[2]
T. Senjyu, T. Miyagi, A. Y. Saber, and T. Funabashi, Emerging solution of large-scale unit commitment problem by stochastic priority list, Elect. Power Syst. Res., vol. 76, pp.283-292, (2006).
DOI: 10.1016/j.epsr.2005.07.002
Google Scholar
[3]
C. Li, R. B. Johnson, A. J. Svoboda, A new unit commitment method, IEEE Trans. power syst., vol. 12, no. 1(1997), pp.113-119.
DOI: 10.1109/59.574930
Google Scholar
[4]
A. I. Cohen and M. Yoshimura, A branch-and-bound algorithm for unit commitment, IEEE Trans. Power Syst., vol. 15, no. 2(2000), p.707–714.
Google Scholar
[5]
M. Carrion and J. M. Arroyo, A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem, IEEE Trans. Power Syst., vol. 21, no. 3(2006), p.1371–1378.
DOI: 10.1109/tpwrs.2006.876672
Google Scholar
[6]
K. A. Juste, H. Kitu, E. Tunaka, and J. Hasegawa, "An evolutionary programming solution to the unit commitment problem, IEEE Trans. power syst., vol. 14, no. 4, pp.1452-1459, (1999).
DOI: 10.1109/59.801925
Google Scholar
[7]
Rodrigo Fuentes-Loyola,Victor H. Quintana, Mediumterm hydro-thermal coordination by semidefinite programming, IEEE Trans. power syst., vol. 18, no. 4(2003), pp.1515-1522.
DOI: 10.1109/tpwrs.2003.811006
Google Scholar
[8]
Cheng Chuanping, Liu Chihwen,Liu Chunchang, Unit commitment by lagrangian relaxation and genetic algorithm, IEEE Trans. power syst., vol. 15, no. 2, pp.707-714, (2000).
DOI: 10.1109/59.867163
Google Scholar