Electroabsorbing Hemoglobin on Nano-Silver/Carbon Nanotube Composite Films Electrode for Oxygen Electroanalysis

Article Preview

Abstract:

A novel electrode has been fabricated with electroabsorbing hemoglobin on the nanosilver coated carbon nanotubes modified glassy carbon electrode (Hb/Ag/CNT/GC). The modifed electrodes showed an excellent electrocatalytic activity for reduction of dissolved oxygen. The peak current is linear with oxygen concentration in the range from 1.63×10-6 to 2.58×10-4 mol.L-1 with a calculated detection limit of 9.78×10-7 mol.L-1 at a signal-to-noise rate of 3, the linear regression equation is i=0.0478C+0.0331 (R2=0.994; i: μA; C: the concentration of oxygen, μmol.L-1). So, the developed electrode was used to determination of oxygen in the water and actual samples and satisfactory results were obtained. The Hb/Ag/CNTs composites may be a potential cathode material of the air battery.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

1120-1125

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima. Nature 354(6348): 56-58 (1991).

Google Scholar

[2] Joseph Wang. Electroanalysis 17: 7-14 (2005).

Google Scholar

[3] Nurgul Karadas, Senem Sanli, Bediha Akmese, Burcu Dogan-Topal, Alp Can, Sibel A. Ozkan. Talanta 115: 911–919 (2013).

DOI: 10.1016/j.talanta.2013.07.006

Google Scholar

[4] Xiaojun Cai, Xia Gao, Lisha Wang, Qi Wu, Xianfu Lin. Sensors and Actuators B: Chemical 181: 575–583 (2013).

Google Scholar

[5] Dawei Pan, Jinhua Chen, Wenyan Tao, Lihua Nie, Shouzhuo Yao. Langmuir 22: 5872-5876 (2006).

Google Scholar

[6] Dao Jun Guo, Hu Lin Li. Carbon 43: 1259-1264 (2005).

Google Scholar

[7] Lim SH, Wei J, Lin JY, Li QT, You JK. Biosens Bioelectron 20: 2341–2346 (2005).

Google Scholar

[8] Yu R, Chen L, Liu Q, Lin J, Tan KL, Ng SC. Chem Mater 10: 718–722 (1998).

Google Scholar

[9] Qiang LL, Vaddiraju S, Rusling JF, Papadimitrakopoulos F. Biosens Bioelectron 26: 682–688 (2010).

Google Scholar

[10] Luqi Liu, Tongxin Wang, Junxin Li, Zhi-Xin Guo, Liming Dai, Deqing Zhang, Daoben Zhu. Chemical Physics Letters, 367: 747–752 (2003).

Google Scholar

[11] A Andreasen, G Danscher, S Juhl, M Stoltenberg, N. P Revsbech, H Jensen, K. B Jensen. Journal of Neuroscience Methods 72: 15–21 (1997).

DOI: 10.1016/s0165-0270(96)00149-5

Google Scholar

[12] Y Komai. The Journal of Experimental Biology 201: 2359–2366 (1998).

Google Scholar

[13] Richard W. Hill. Journal of Applied Physiology 33: 261-263 (1972).

Google Scholar

[14] Thierry Labasque, Christian Chaumery, Alain Aminot, Gilles Kergoat. Marine Chemistry 88: 53–60 (2004).

DOI: 10.1016/j.marchem.2004.03.004

Google Scholar

[15] Hubert Fadrus, Josef Maly. Analyst 96: 591-597 (1971).

Google Scholar

[16] David F. Bocian, Eric W. Findsen, Joseph A. Hofmann, G. Alan Schick, Daniel R. English, David N. Hendrickson, Kenneth S. Suslick. Inorg. Chem. 23: 800–807 (1984).

DOI: 10.1021/ic00175a003

Google Scholar

[17] S.A. Rahim, S.H. Mohamed. Talanta 25: 519–521 (1978).

Google Scholar

[18] Hao Xu, Jonathan W. Aylott , Raoul Kopelman, Terry J. Miller, Martin A. Philbert. Analytical Chemistry 73: 4124–4133 (2001).

Google Scholar

[19] Stefan Sax, Evelin Fisslthaler, Stefan Kappaun, Christian Konrad, Kerstin Waich, Torsten Mayr, Christian Slugovc, Ingo Klimant, Emil J. W. Advanced Materials 21: 3483–3487 (2009).

DOI: 10.1002/adma.200802237

Google Scholar

[20] Xu-dong Wang, Xi Chen, Zhao-xiong Xie, Xiao-ru Wang. Angewandte Chemie 120: 7560–7563 (2008).

Google Scholar

[21] Shaojun Dong, Theodore Kuwana. Electrochimica Acta 33: 667–674 (1988).

Google Scholar

[22] Jayne B. Zimmerman, R. Mark Wightman. Analytical Chemistry 63: 24–28 (1991).

Google Scholar

[23] Jin Litong, Jin Ping, Ye Jiannong, Fang Yuzhi. Talanta 39: 145–147 (1992).

DOI: 10.1016/0039-9140(92)80009-3

Google Scholar

[24] Derek Pletcher, Sotirios Sotiropoulos. Analytica Chimica Acta 322: 83–90 (1996).

Google Scholar

[25] Sung-Kwon Jung, Waldemar Gorski, Craig A. Aspinwall, Lisa M. Kauri, Robert T. Kennedy. Analytical Chemistry 71: 3642–3649 (1999).

DOI: 10.1021/ac990271w

Google Scholar

[26] Huangxian Ju, Chunze Shen. Electroanalysis 13: 789-793 (2001).

Google Scholar

[27] M. F. Perutz, A. J. Wilkinson, M. Paoli, and G. G. Dodson. Annual Review of Biophysics and Biomolecular Structure 27: 1–34 (1998).

Google Scholar

[28] Dan Shan, Shanxia Wang, Huaiguo Xue, Serge Cosnier. Electrochemistry Communications 9: 529–534 (2007).

Google Scholar

[29] N. Zheng, Y. Zeng, P.G. Osborne, Y. Li, W. Chang, Z. Wang. Journal of Applied Electrochemistry 32: 129–133 (2002).

Google Scholar

[30] Jian-Shan Ye, Ying Wen, Wei De Zhang, Hui-Fang Cui, Leong Ming Gan, Guo Qin Xu, Fwu-Shan Sheu. Journal of Electroanalytical Chemistry 562: 241–246 (2004).

DOI: 10.1016/j.jelechem.2003.09.007

Google Scholar

[31] Pinghua Yang, Wanzhi Wei, Chunyuan Tao. Analytica Chimica Acta 585: 331–336 (2007).

Google Scholar