Preparation of Ag-Modified CaBiO2Cl and its Photocatalytic Ability under Visible Light

Article Preview

Abstract:

Ag-modified CaBiO2Cl photocatalysts were synthesized by the one-step solid state reaction method. The microstructure and morphology of catalysts were characterized by using X-ray diffraction, Scanning electron microscopy, and Energy dispersive X-ray detector (EDS) techniques. The photocatalytic activities of pure CaBiO2Cl and Ag-CaBiO2Cl catalysts were further evaluated by degrading methylene blue (MB) under visible-light irradiation. The measured UV-vis absorption spectra indicated that the degradation of Ag-modified CaBiO2Cl has been improved by about 12% in comparison with pure CaBiO2Cl. The enhanced photocatalytic activity in Ag-modified CaBiO2Cl can be ascribed to the better morphologies of the composites due to the Ag additive.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

120-126

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fujishima, K. Honda: Nature, 238 (1972), pp.37-38.

Google Scholar

[2] A.J. Esswein, D.G. Nocera: Chemical Reviews, 107 (2007), p.4022.

Google Scholar

[3] H. Tong, S.X. Ouyang, Y.P. Bi, et al.: Advanced Materials, 24 (2012), p.229–251.

Google Scholar

[4] L. Zhu, L.X. Cao, G. Su, et al.: Applied Surface Science, 257 (2011), p.7932–7937.

Google Scholar

[5] M. Anpo, M. Takeuchi: J. Journal of Catalysis, 216 (2003), p.505.

Google Scholar

[6] Matillews R W.: Water. Res., 25(1991), pp.1169-1176.

Google Scholar

[7] A.L. Linsebigler, G. Lu, J.T. Yates: Chemical Reviews, 95 (1995), p.735.

Google Scholar

[8] S. Bagwasi, Y.X. Niu, M. Nasir, et al.: Applied Surface Science, 264 (2013), p.139–147.

Google Scholar

[9] Z. Liu, X.X. Xu, J.Z. Fang, et al.: Applied Surface Science, 258 (2012), p.3771–3778.

Google Scholar

[10] H. Tong, S.X. Ouyang, Y.P. Bi, et al.: Advanced Materials, 24 (2011), p.229–251.

Google Scholar

[11] JW. Tang, ZG. Zou, JH. Ye: J. Phys. Chemical Communications, 11 (2007), pp.12779-12785.

Google Scholar

[12] K. Yu, SG. Yang, H. He, et al.: Journal of Physical Chemistry. 113 (2009), pp.10024-10032.

Google Scholar

[13] XC. Song, YF. Zheng, R. Ma, et al.: J. Hazard Mater, 192 (2011), pp.186-191.

Google Scholar

[14] Ran Chen, Chaohao Hu, Shuai Wei, et al.: materials science forum. (2012).

Google Scholar

[15] JH. Xu, WZ. Wang, EP. Gao, et al.: Catalysis Communications, 12 (2011), pp.834-838.

Google Scholar

[16] Z. Shan, X. Lin, M. Liu, et al.: Solid State Sciences, 11(2009), p.1163.

Google Scholar

[17] B. Zhou, X. Zhao, HJ. Liu, et al.: Separation and Purification Technology, 77 (2011), pp.275-282.

Google Scholar

[18] Wen Zhao, Chaohao Hu, Fengzheng Lv, et al.: Advanced Materials Research (2013), pp.2204-2209.

Google Scholar

[19] A. Kudo, K. Omori and H. Kato: J. Am. Chem. Soc., 121 (1999), pp.11459-11467.

Google Scholar

[20] X. Yin, W. Que, Y. Liao, et al.: Colloids and Surfaces A: Physicochem. Eng. Aspects, 410 (2012), p.153–158.

Google Scholar

[21] M. Yoon, M. Seo, C. Jeong, et al.: Chemistry of Materials, 17 (2005), p.6069.

Google Scholar

[22] L. Li, Y. Yang, X. Huang, et al.: J. Phys. Colloids and Surfaces B, 109 (2005), p.12394.

Google Scholar

[23] Ruh Ullah, Joydeep Dutta: J. Hazard. Mater., 156 (2008), p.194–200.

Google Scholar