The Recent Advances and Applications of Arsenic Speciation in Water

Article Preview

Abstract:

Arsenic (As) is well known as a toxic element for human beings. The toxicity, mobility,and bioavailability of As compounds is highly dependent on its chemical forms and oxidation states. Speciation analysis of trace elements is an important issue in biomedical and environmental sciences. For the past few years many studies have been performed to determine As speciation in tap water, food chain and other environmental samples. This review provides the chemical speciation of As in water analysis in recent ten years, including the separation and preconcentration techniques, chromatographic techniques, detection techniques of inorganic As and organic As species (included As-containing chemical warfare agents). The advantages of various methods, insufficient, selectivity, sensitivity, limit of detection (DL) were reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

1384-1392

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] WHO, 2001, Environmental Health Criteria 224, 2nd ed., Arsenic Compounds, World Health Organization, Geneva.

Google Scholar

[2] B. Mandal,K. Suzuki, Arsenic round the world: a review, Talanta 2002, 58: 201-235.

DOI: 10.1016/s0039-9140(02)00268-0

Google Scholar

[3] P. Smedley, W. Edmunds, K. Pelig-Ba, Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health, Geol. Soc. 1996, 113: 163-181.

DOI: 10.1144/gsl.sp.1996.113.01.13

Google Scholar

[4] P. Smedley, D. Kinniburgh, 2002, A review of the source, behavior and distribution of arsenic in natural waters, Appl. Geochem. 2002, 17: 517-568.

DOI: 10.1016/s0883-2927(02)00018-5

Google Scholar

[5] M. Argos, T. Kalra, P. Rathouz, et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 2010, 376: 252-258.

DOI: 10.1016/s0140-6736(10)60481-3

Google Scholar

[6] Nordstrom, D.K., Public health-worldwide occurrences of arsenic in ground water. Science 2002, 296, 2143-2145.

DOI: 10.1126/science.1072375

Google Scholar

[7] J.C. Ng, J. Wang, A.A. Sharim, A global health problem caused by arsenic from natural sources. Chemosphere 2003, 52(9): 1353-1359.

DOI: 10.1016/s0045-6535(03)00470-3

Google Scholar

[8] WHO Guidelines for Drinking Water Quality, Volume 1, Recommendation, World Health Organization, Geneva, (2008).

Google Scholar

[9] CE, 1998. Drinking Water Directive (DWD), Council Directive 98/83/CE.

Google Scholar

[10] US Environmental Protection Agency, 2001. National Primary Drinking Water Regulations, Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring, Final Rule, 40 CFR Parts 141-142, 66(14), 6976.

Google Scholar

[11] K.F. Akter, G. Owens, D.E. Davey, R. Naidu, Reviews of Environmental Contamination and Toxicology, Springer, New York, 2005, p.97.

Google Scholar

[12] S. Miyashita, T. Kaise, Biological effects and metabolism of arsenic compounds present in seafood products, Food Hyg. Saf. Sci. 2010, 51(3): 71-91.

Google Scholar

[13] I. Komorowicz,D. Barałkiewicz, Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry-Last decade review, Talanta 2011, 84: 247-261.

DOI: 10.1016/j.talanta.2010.10.065

Google Scholar

[14] C. Niegel, F. -M. Matysik, Analytical methods for the determination of arsenosugars—A review of recent trends and developments[J], Anal. Chim. Acta, 2010, 657: 83–99.

DOI: 10.1016/j.aca.2009.10.041

Google Scholar

[15] H.M. Anawar, Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry[J]. Talanta, 2012, 88: 30–42.

DOI: 10.1016/j.talanta.2011.11.068

Google Scholar

[16] K. -C. Hsu,C. -C. Sun, Y. -L. Huang, Arsenic speciation in biomedical sciences: Recent advances and applications[J]. Kaohsiung J. Med. Sci., 2011, 27: 382-389.

DOI: 10.1016/j.kjms.2011.05.005

Google Scholar

[17] M. Burguera J.L. Burguera, Analytical methodology for speciation of arsenic in environmental and biological samples[J]. Talanta 1997, 44: 1581-1604.

DOI: 10.1016/s0039-9140(97)00064-7

Google Scholar

[18] Bob Muir, Ben J. Slater, David B. Cooper, Christopher M. Timperley, Analysis of chemical warfare agents I. Use of aliphatic thiols in the trace level determination of Lewisite compounds in complex matrices[J]. J. Chromatogr. A, 2004, 1028: 313–320.

DOI: 10.1016/j.chroma.2003.12.001

Google Scholar

[19] A.R. Türker, New sorbents for solid-phase extraction for metal enrichment, Clean 2007, 35: 548-557.

DOI: 10.1002/clen.200700130

Google Scholar

[20] H. Erdoğan, Ö. Yalçınkaya, A.R. Türker, Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction, Desalination 2011, 280: 391-396.

DOI: 10.1016/j.desal.2011.07.029

Google Scholar

[21] M. Sigrista, A. Albertengo, H. Beldoménico, M. Tudino, Determination of As(III) and total inorganic As in water samples using an on-line solid phase extraction and flow injection hydride generation atomic absorption spectrometry, J. Haz. Mater., 2011, 188: 311–318.

DOI: 10.1016/j.jhazmat.2011.01.126

Google Scholar

[22] T. C. Voice,L. V. F. del Pino, I. Havezov, D. T. Long, Field deployable method for arsenic speciation in water, Phy. & Chem. of the Earth, 2011, 36: 436-441.

DOI: 10.1016/j.pce.2010.03.027

Google Scholar

[23] F. Shemirani, M. Baghdadi, M. Ramezani, Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry, Talanta 2005, 65: 882-887.

DOI: 10.1016/j.talanta.2004.08.009

Google Scholar

[24] A. Tang, G. Ding, X. Yan, Cloud point extraction for the determination of As(III) in water samples by electrothermal atomic absorption spectrometry. Talanta 2005, 67: 942–946.

DOI: 10.1016/j.talanta.2005.04.016

Google Scholar

[25] M.A.M. da Silva V.L.A. Frescura, A.J. Curtius, Spectrochim. Acta B 2000, 55: 803–813.

Google Scholar

[26] S.F.P. Pereira, S.L.C. Ferreira, G.R. Oliveira, D.C. Palheta, B.C. Barros, Eclet. Quim. 2008, 33: 23–29.

Google Scholar

[27] R.E. Rivas,I. López-García,M. Hernández-Córdoba, Spectrochim. Acta B 2009, 64: 329–333.

Google Scholar

[28] H.I. Ulusoy, M. Akcay, S. Ulusoy, R. Gürkan, Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction[J], Anal Chim Acta, 2011, 703: 137– 144.

DOI: 10.1016/j.aca.2011.07.026

Google Scholar

[29] Outline of the Project for the Destruction of Abandoned Chemical Weapons (ACW) in China (ACW Destruction Project) October 2002. Abandoned Chemical Weapons (ACW) Office, Cabinet Office.

DOI: 10.36092/kjhs.2021.43.2.459

Google Scholar

[30] S. Hanaoka,K. Nomura,S. Kudo, Identification and quantitative determination of diphenylarsenic compounds in abandoned toxic smoke canisters[J]. J. Chromatogr. A, 2005, 1085: 213–223.

DOI: 10.1016/j.chroma.2005.05.108

Google Scholar

[31] Zhou L.M., Lu C.H., Advances in Studies on Analysis Methods for Determination of Arsenic-containing Agents and their Correlative Toxic Compounds. icbbe, The 3nd International conferece on Bioinformatics and Biomedical Engineering.

DOI: 10.1109/icbbe.2009.5162291

Google Scholar

[32] Zhou J.M., Nie Y.F., Lu S.L., Liu S.H., Studied on the Identification method of microamounts Arsenic-containing compounds in Water[J].

Google Scholar

[33] R. Chen, B.W. Smith, J.D. Winefordner, M.S. Tu, G. Kertulis, L.Q. Ma, Anal. Chim. Acta 2004, 504: 199–207.

Google Scholar

[34] Z. Gong, X. Lu, M. Ma, C. Watt, X.C. Le, Arsenic speciation analysis. Talanta 2002, 58: 77–96.

Google Scholar

[35] M. Montes-Bayon, K. DeNicola, J.A. Caruso, Liquid chromatography-inductively coupled plasma mass spectrometry.J. Chromatogr. A 2003, 1000: 457–476.

DOI: 10.1016/s0021-9673(03)00527-2

Google Scholar

[36] Li S.M., Li W., Yue L.J., Zuo B.L., Determination of Phenylarsenic Compounds in Environmental Samples by High Performance Liquid Chromatography[J].

Google Scholar

[37] X.C. Le, M. Ma, J. Chromatogr. A 1997, 764: 55–64.

Google Scholar

[38] B. Do,S. Robinet, D. Pradeau, F. Guyon, Speciation of arsenic and selenium compounds by ion-pair reversed-phase chromatography with electrothermic atomic absorption spectrometry. Application of experimental design for chromatographic optimisation. J. Chromatogr. A. 2001, 918: 87–98.

DOI: 10.1016/s0021-9673(01)00723-3

Google Scholar

[39] P. Niedzielski, M. Siepak, J. Siepak, Microchem. J. 2002, 72: 137–145.

Google Scholar

[40] M.C. Villa-Lojo, E. Alonso-Rodriguez, P. Lopez-Mahia, S. Muniategui-Lorenzo, D. Prada-Rodriguez, Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic arsenic speciation in fish tissue. Talanta 2002, 57: 741–750.

DOI: 10.1016/s0039-9140(02)00094-2

Google Scholar

[41] R. Sur, L. Dunemann, Method for the determination of five toxicologically relevant arsenic species in human urine by liquid chromatography-hydride generation atomic absorption spectrometry. J. Chromatogr. B 2004, 807: 169–176.

DOI: 10.1016/j.jchromb.2004.03.051

Google Scholar

[42] A.A. Ammann, Arsenic speciation by gradient anion exchange narrow bore ion chromatography and high resolution inductively coupled plasma mass spectrometry detection, J. Chromatogr. A, 2010, 1217: 2111–2116.

DOI: 10.1016/j.chroma.2010.01.086

Google Scholar

[43] H. Md Anawar, Review:Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry, Talanta 2012, 88: 30– 42.

DOI: 10.1016/j.talanta.2011.11.068

Google Scholar

[44] M. Sigrist, H. Beldoménico, Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations, Spectrochim. Acta Part B 2004, 59: 1041–1045.

DOI: 10.1016/j.sab.2004.04.003

Google Scholar

[45] F. Shemirani, M. Baghdadi, M. Ramezani, Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta 2005, 65: 882–887.

DOI: 10.1016/j.talanta.2004.08.009

Google Scholar

[46] A.J. Bednar, J.R. Garbarino, M.R. Burkhardt, J.F. Ranville, T.R. Wildeman, Field and laboratory arsenic speciation methods and their application to natural-water analysis[J]. Water Res. 2004, 38: 355–364.

DOI: 10.1016/j.watres.2003.09.034

Google Scholar

[47] M. Ghambarian, M.R. Khalili-Zanjani, Y. Yamini, A. Esrafili, N. Yazdanfar, Preconcentration and speciation of arsenic in water specimens by the combination of solidification offloating drop microextraction and electrothermal atomic absorption spectrometry, Talanta 2010, 81: 197–201.

DOI: 10.1016/j.talanta.2009.11.056

Google Scholar

[48] R.P. Monasterio, R.G. Wuilloud, Ionic liquid as ion-pairing reagent for liquid–liquid microextraction and preconcentration of arsenic species in natural waters followed by ETAAS, J. Anal. At. Spectrom. 2010, 25(9): 1485–1490.

DOI: 10.1039/c000040j

Google Scholar

[49] P. Liang, R. Liu, Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination, Anal. Chim. Acta , 602: 32–36.

DOI: 10.1016/j.aca.2007.09.012

Google Scholar

[50] Y.W. Chen, N. Belzile, High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour forming elements As, Se, Sb and Hg: a critical review, Anal. Chim. Acta 2010, 671(1-2): 9–26.

DOI: 10.1016/j.aca.2010.05.011

Google Scholar

[51] Y. Zhang, W. Wang, L. Li, Y. Huang, J. Cao, Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples, Talanta 2010, 80: 1907–(1912).

DOI: 10.1016/j.talanta.2009.10.042

Google Scholar

[52] Wei C, Liu J. A new hydride generation system applied in determination of arsenic species with ion chromatography-hydride generation-atomic fluorescence spectrometry(IC-HG-AFS). Talanta 2007; 73: 540-545.

DOI: 10.1016/j.talanta.2007.04.026

Google Scholar

[53] A. Montaser, J.A. McLean, H.J.M. Liu, J.M. Mermet, in: A. Montaser (Ed. ), Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York, (1998).

Google Scholar

[54] L. Zhu, S.Z. Chen, D.B. Lu, X.L. Cheng, Single-wall carbon nanotubes for speciation of arsenic in environmental samples by inductively coupled plasma mass spectrometry, At. Spectrosc. 30 (6) (2009) 218–222.

Google Scholar

[55] G. Pearson, G. Greenway, A highly efficient sample introduction system for interfacing microfluidic chips with ICP-MS, J. Anal. At. Spectrom. 22 (2007) 657–662.

DOI: 10.1039/b702624b

Google Scholar

[56] A. Ramesh Kumar, P. Riyazuddin, Preservation of inorganic arsenic species in environmental water samples for reliable speciation analysis, Trends in Anal. Chem., 2010, 29(10): 1212-1223.

DOI: 10.1016/j.trac.2010.07.009

Google Scholar