Laser Absorption Spectroscopy of H2O in the 12 252-12 312 cm-1Region Using Herriott-Type Cell

Article Preview

Abstract:

We study the absorption spectra of water vapor by the 899-29 Ti:sapphire laser in the region between 12 252-12 312 cm-1. Due to the weak absorption of H2O, a folded multi-pass optical path cell of Herriott-type is used to increase the sensitivity of detection. Totally, forty-three lines with intensity ranging around 10-24cm-1/molecule are recorded and the centre frequency of transitions is derived by fitting observed lines using Voigt profile.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

1456-1461

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Herzberg G. Molecular spectra and molecular structure II: infrared and Raman spectra of polyatomic molecules. New York, NY: VanNostrand Reinhold Co.; 1945 (reprinted Malabar, FL: Krieger Publishing, 1991).

Google Scholar

[2] Liu X, Zhou X, Jeffries JB, Hanson RK. Experimental study of H2O spectroscopic parameters in the near-IR (6940–7440 cm-1) for gas sensing applications at elevated temperature. JQSRT 2007; 103: 565–77.

DOI: 10.1016/j.jqsrt.2006.07.008

Google Scholar

[3] <http: /www. nel-world. com/products/photonics/semicon-ld. html>.

Google Scholar

[4] P.L. Ponsardin, E.V. Browell Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region J Mol Spec, 185 (1997), p.58–70.

DOI: 10.1006/jmsp.1997.7354

Google Scholar

[5] R.A. Toth Measurements of H216O line positions and strengths: 11610 to 12861 cm−1 J Mol Spec, 166 (1994), p.176–183.

DOI: 10.1006/jmsp.1994.1183

Google Scholar

[6] R. Schermaul, R.C.M. Learner, D.A. Newnham, R.G. Williams, J. Ballard, N.F. Zobov et al. The water vapor spectrum in the region 8600–15000 cm−1: experimental and theoretical studies for a new spectral line database. I. Laboratory measurements.

DOI: 10.1006/jmsp.2001.8373

Google Scholar

[7] R. Schermaul, R.C.M. Learner, D.A. Newnham, J. Ballard, N.F. Zobov, D. Belmiloud et al. The water vapor spectrum in the region 8600–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction J Mol Spec, 208 (2001).

DOI: 10.1006/jmsp.2001.8374

Google Scholar

[8] M. -F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C. Clerbaux et al. Water vapor line parameters in the 13000–9250 cm−1 region JQSRT, 82 (2003), p.99–117.

DOI: 10.1016/s0022-4073(03)00148-1

Google Scholar

[9] Cousin J, Chen W, Fourmentin M, Fertein E, Boucher D, Cazier F, et al. Laser spectroscopic monitoring of gas emission and measurements of the 13C/12C isotope ratio in CO2from a wood-based combustion. J Quant SpectroscRadiat Transfer 2008; 109: 151–67.

DOI: 10.1016/j.jqsrt.2007.05.010

Google Scholar

[10] D. Herriott, H. Kogelnik, and R. Kompfner, Off-axis paths in spherical mirror interferometers, Appl. Opt. 3, 523(1964).

DOI: 10.1364/ao.3.000523

Google Scholar

[11] WR Trutna and RL Byer, Multiple-pass Raman gain cell, Appl. Opt. 19, 301(1980).

DOI: 10.1364/ao.19.000301

Google Scholar

[12] Gamache RR, Kennedy S, Hawkins R, Rothman LS. Total internal partition sums for molecules in the terrestrial atmosphere. J MolStruct 2000; 517–518: 407–25.

DOI: 10.1016/s0022-2860(99)00266-5

Google Scholar

[13] Varghese PL, Hanson RK. Collisional narrowing effects on spectral line shapes measured at high resolution. Appl Opt 1984; 23: 2376–85.

DOI: 10.1364/ao.23.002376

Google Scholar

[14] Wells RJ. Rapid approximation to the Voigt/Faddeeva function and its derivatives. J Quant SpectroscRadiat Transfer 1999; 62: 29–48.

DOI: 10.1016/s0022-4073(97)00231-8

Google Scholar

[15] Bragg SL, Kelly JD. Atmospheric water vapor absorption at 1. 3mm. Appl Opt 1987; 26(3): 506–13.

Google Scholar

[16] Kielkopf JF. New approximation to the Voigt function with applications to spectral-line profile analysis. J Opt Soc Am 1973; 63(8): 987–95.

DOI: 10.1364/josa.63.000987

Google Scholar

[17] Rothman LS, Jacquemart D, Barbe A, Benner DC, Birk M, Brown LR, et al. The HITRAN 2004 molecular spectroscopic database. J Quant SpectroscRadiatTransfer 2005; 96: 139–204.

Google Scholar