An Assessment of Supercritical Hydrothermal Combustion (SCHC) for Organic Wastes Destruction

Article Preview

Abstract:

The supercritical hydrothermal combustion (SCHC) accompanied by visible hydrothermal flame in supercritical water completely differs from conventional combustion, which represents more prominent comprehensive technical advantages in organic wastes destruction, comparing with wet-air oxidation, incineration and flameless SCWO. This paper reviews the existing SCHC reactors, which can be used for studying the ignition and extinction characteristics of various fuels, and also shows their effectiveness for the pollutant disposal and potential optimization directions. To date, the ignition and extinction temperatures of isopropyl alcohol, methanol and ethanol have been investigated broadly, however it is still necessary to further explore the ignition mechanism from micro perspective and build up proper ignition criterion models for hydrothermal flame. In addition, further research on the migration and conversion rules of various recalcitrant compounds such as phenol, ammonia, and so on during SCHC process is also of great significance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

1777-1782

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Brunner: Journal of Supercritical Fluids 47(2009), p.382.

Google Scholar

[2] P.A. Marrone: Journal of Supercritical Fluids 79(2013), p.283.

Google Scholar

[3] V. Vadillo, J. Sanchez-Oneto, J. Ramon Portela, and E.J. Martinez de la Ossa: Industrial & Engineering Chemistry Research 52(2013), p.7617.

Google Scholar

[4] M. Weber and C. Trepp: Elsevier Science Publ B V: Amsterdam. 1996, p.565.

Google Scholar

[5] A. Gidner and L. Stenmark: Chematur Engineering AB, Karlskoga(SE), (2005).

Google Scholar

[6] W. Schilling and E. Franck: Berichte der Bunsengesellschaft für Physikalische Chemie 92(1988), p.631.

DOI: 10.1002/bbpc.198800149

Google Scholar

[7] R. Steeper, S. Rice, M. Brown, and S. Johnston: The Journal of Supercritical Fluids 5(1992), p.262.

Google Scholar

[8] R.M. Serikawa, T. Usui, T. Nishimura, H. Sato, S. Hamada, and H. Sekino: Fuel 81(2002), p.1147.

Google Scholar

[9] B. Wellig, M. Weber, K. Lieball, K. Príkopský, and P. Rudolf von Rohr: The Journal of Supercritical Fluids 49(2009), p.59.

DOI: 10.1016/j.supflu.2008.11.021

Google Scholar

[10] C. Augustine and J.W. Tester: The Journal of Supercritical Fluids 47(2009), p.415.

Google Scholar

[11] M.D. Bermejo, C. Jiménez, P. Cabeza, A. Matías-Gago, and M.J. Cocero: The Journal of Supercritical Fluids 59(2011), p.140.

DOI: 10.1016/j.supflu.2011.08.009

Google Scholar

[12] P. Cabeza, J.P.S. Queiroz, S. Arca, C. Jimenez, A. Gutierrez, M.D. Bermejo, and M.J. Cocero: Chemical Engineering Journal 232(2013), p.1.

Google Scholar

[13] A. Sobhy, I.S. Butler, and J.A. Kozinski: Proceedings of the Combustion Institute 31(2007), p.336.

Google Scholar

[14] P. Stathopoulos, K. Ninck, and P.R. von Rohr: Journal of Supercritical Fluids 70(2012), p.112.

Google Scholar

[15] K. Prikopsky, B. Wellig, and P.R. von Rohr: Journal of Supercritical Fluids 40(2007), p.246.

Google Scholar

[16] B. Wellig and P.R. VON ROHR: Research Activities 2001: Contents 2003), p.18.

Google Scholar

[17] K. Príkopský, characterization of continuous diffusion flames in supercritical water oxidation. 2007, Swiss Federal Institute of Technology: Zürich.

Google Scholar

[18] H. Sato, S. Hamada, R.M. Sertkawa, T. Nishimura, T. Usui, and H. Sekino: International Journal of High Pressure Research 20(2001), p.403.

DOI: 10.1080/08957950108206188

Google Scholar

[19] P. Cabeza, M.D. Bermejo, C. Jiménez, and M.J. Cocero: Water research 45(2011), p.2485.

Google Scholar

[20] M. Bermejo, P. Cabeza, M. Bahr, R. Fernández, V. Ríos, C. Jiménez, and M. Cocero: The Journal of Supercritical Fluids 50(2009), p.240.

DOI: 10.1016/j.supflu.2009.06.010

Google Scholar

[21] H.L. La Roche, M. Weber, and C. Trepp. Design rules for the wallcooled hydrothermal burner (WHB). in Process Technology Proceedings. 1996. Elsevier.

DOI: 10.1016/s0921-8610(96)80110-5

Google Scholar

[22] B. Wellig, K. Lieball, and P. Rudolf von Rohr: The Journal of supercritical fluids 34(2005), p.35.

DOI: 10.1016/j.supflu.2004.07.003

Google Scholar

[23] K. Hirosaka, M. Fukayama, K. Wakamatsu, Y. Ishida, K. Kitagawa, and T. Hasegawa: PROCEEDINGS OF THE COMBUSTION INSTITUTE 31(2007), p.3361.

DOI: 10.1016/j.proci.2006.07.065

Google Scholar

[24] K. Koido, K. Hirosaka, T. Kubo, M. Fukayama, K. Ouryouji, and T. Hasegawa: COMBUSTION THEORY AND MODELLING 13(2009), p.295.

DOI: 10.1080/13647830802617698

Google Scholar

[25] A. Sobhy, R. Guthrie, I. Butler, and J. Kozinski: Proceedings of the Combustion Institute 32(2009), p.3231.

Google Scholar

[26] P. Cabeza, M. Dolores Bermejo, C. Jimenez, and M. Jose Cocero: Water Research 45(2011), p.2485.

Google Scholar

[27] T. Hirth and E.U. Franck: Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 97(1993), p.1091.

Google Scholar

[28] L. Qian, S. Wang, and Y. Li: Adv. Mater. Res. (2014).

Google Scholar