[1]
L.W. Mitich, Kudzu [Pueraria lobata (Willd. ) Ohwi]. WSSA. Vol. 14 (2000), pp.231-250.
DOI: 10.1614/0890-037x(2000)014[0231:kplwo]2.0.co;2
Google Scholar
[2]
K.H. Wong, G.Q. Li, K.M. Li, et al. Kudzu root: traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. J Ethnopharmacol. Vol. 134 (2011), pp.584-607.
DOI: 10.1016/j.jep.2011.02.001
Google Scholar
[3]
W. Cherdshewasart, W. Sutjit, Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine. Vol. 15 (2008), pp.38-43.
DOI: 10.1016/j.phymed.2007.07.058
Google Scholar
[4]
I.N. Forseth, A.F. Innis, Kudzu (Pueraria montana): History, physiology, and ecology combine to make a major ecosystem threat. Crit Rev Plant Sci. Vol. 23 (2004), pp.401-413.
DOI: 10.1080/07352680490505150
Google Scholar
[5]
P. Vanhung, N. Morita, Chemical compositions, fine structure and physicochemical properties of kudzu (Pueraria lobata) starches from different regions. Food Chem. Vol. 105 (2007), pp.749-755.
DOI: 10.1016/j.foodchem.2007.01.023
Google Scholar
[6]
C. Zhao, H.Y. Chan, D. Yuan, et al. Rapid simultaneous determination of major isoflavones of Pueraria lobata and discriminative analysis of its geographical origins by principal component analysis. Phytochem Analysis, Vol. 22 (2011), pp.503-508.
DOI: 10.1002/pca.1308
Google Scholar
[7]
S.E. Jin, Y.K. Son, B.S. Min, et al. Anti-inflammatory and antioxidant activities of constituents isolated from Pueraria lobata roots, Arch Pharml Res. Vol. 35 (2012), pp.823-837.
DOI: 10.1007/s12272-012-0508-x
Google Scholar
[8]
N. Pandey, Y.B. Tripathi, Antioxidant activity of tuberosin isolated from Pueraria tuberose Linn. J Inflam-Lond, Vol. 7 (2010), p.47.
DOI: 10.1186/1476-9255-7-47
Google Scholar
[9]
W. Cherdshewasart, W. Sutjit, K. Pulcharoen, et al. The mutagenic and antimutagenic effects of the traditional phytoestrogen-rich herbs, Pueraria mirifica and Pueraria lobata. Braz. J. Med. Biol. Res. Vol. 42 (2009), pp.816-823.
DOI: 10.1590/s0100-879x2009000900008
Google Scholar
[10]
M. Miyazawa, K. Sakano, S. Nakamura, et al. Antimutagenic activity of isoflavone from Pueraria lobata. J Agr Food Chem. Vol. 49 (2001), pp.336-341.
DOI: 10.1021/jf000255w
Google Scholar
[11]
C.C. Lin, C. l. Wang, S.J. She, Determination of 12 pueraria components by highperformance liquid chromatography-mass spectrometry. Department of Chemistry, Vol. 28 (2005), pp.1785-1795.
Google Scholar
[12]
Y.G. Zuo, H. Cheng, Y.W. Deng, Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and puerh teas using HPLC with a photodiode array detector. Talanta, Vol. 57 (2002), pp.307-316.
DOI: 10.1016/s0039-9140(02)00030-9
Google Scholar
[13]
S.B. Wu, R.S. Meyer, B. D. Whitaker, et al. A new liquid chromatography-mass spectrometry-based strategy to integrate chemistry, morphology, and evolution of eggplant (Solanum) species. J Chromatogr A, Vol. 1314 (2013), pp.154-172.
DOI: 10.1016/j.chroma.2013.09.017
Google Scholar
[14]
S.B. Wu, K. Dastmalchi, C. Long, et al. Metabolite Profiling of Jaboticaba (Myrciaria cauliflora) and Other Dark-Colored Fruit Juices. J Agr Food Chem. Vol. 60 (2002), pp.7513-7525.
DOI: 10.1021/jf301888y
Google Scholar
[15]
Z.S. Jia, M.C. Tang, J.M. Wu, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. Vol. 64 (1999), pp.555-559.
DOI: 10.1016/s0308-8146(98)00102-2
Google Scholar
[16]
C.H. Ma, T.T. Liu, L. Yang, et al. Study on ionic liquid-based ultrasonic-assisted extraction of biphenyl cyclooctene lignans from the fruit of Schisandra chinensis Baill. Analytica Chimica Acta, Vol. 689 (2011), pp.110-116.
DOI: 10.1016/j.aca.2011.01.012
Google Scholar
[17]
L. Yang, Y. Liu, Y.G. Zu, et al. Optimize the process of ionic liquid-based ultrasonic-assisted extraction of aesculin and aesculetin from Cortex fraxini by response surface methodology. Chem Eng J. Vol. 175 (2011), pp.539-547.
DOI: 10.1016/j.cej.2011.09.110
Google Scholar
[18]
Z.J. Wang, D.H. Luo, C. Ena, Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using Uniform Design. Carbohyd Polym. Vol. 69 (2007), pp.311-317.
DOI: 10.1016/j.carbpol.2006.10.013
Google Scholar
[19]
L. Yang, H. Wang, Y.G. Zu, et al. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem Eng J. Vol. 172 (2011).
DOI: 10.1016/j.cej.2011.06.039
Google Scholar