[1]
X. Yin, P.F. Han, X.P. Lu, and Y. Wang. A review on the dewaterability of bio-sludge and ultrasound pretreatment,. Ultrasonics Sonochemistry, vol. 11, pp.337-348, (2004).
DOI: 10.1016/j.ultsonch.2004.02.005
Google Scholar
[2]
K.A. Northcott, I. Snape, P. J. Scales, and G.W. Stevens. Dewatering behavior of water treatment sludges associated with contaminated site remediation in Antarctica,. Chemical Engineering Science, vol. 60, pp.6835-6843, (2005).
DOI: 10.1016/j.ces.2005.05.049
Google Scholar
[3]
X.Y. Li, S.F. Yang. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge,. Water Research, vol. 41, pp.1022-1030, (2007).
DOI: 10.1016/j.watres.2006.06.037
Google Scholar
[4]
C.H. Zhou, J.Q. Chen, H. Kong, and F.Y. Wang. Experiment of improved dehydration capability of municipal sludge,. Chinese Journal of Environmental Engineering, vol. 9, pp.2125-2128, (2011).
Google Scholar
[5]
M. Xie, Z. Shi, and S.Z. Li. Measuring Specific Resistance to Filtration(SRF) of Sludge,. Environmental Science & Technology, vol. 29, pp.15-16, 42, (2006).
Google Scholar
[6]
J. Vaxelaire, P. Cezac. Moisture distribution in activated sludges: a review,. Water Research, vol. 38, pp.2215-2230, (2004).
DOI: 10.1016/j.watres.2004.02.021
Google Scholar
[7]
D.J. Lee. CInterpretation of bound water data measured via dilatometric technique". Water Research, vol. 30, pp: 2230-2232, (1996).
DOI: 10.1016/0043-1354(96)00086-3
Google Scholar
[8]
B Jin, B.M. Wilén, P. Lant. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge,. Chemical Engineering Journal, vol, 98, 115-126, (2004).
DOI: 10.1016/j.cej.2003.05.002
Google Scholar
[9]
P.S. Yen, L.C. Chen, C.Y. Chien, R.M. Wu, and D.J. Lee. Network strength and dewaterability of flocculated activated,. Water Research, vol. 36, pp.539-550, (2002).
DOI: 10.1016/s0043-1354(01)00260-3
Google Scholar
[10]
K. Grijspeerdt, W. Verstraete. Image analysis to estimate the settleability and concentration of activated sludge,. Water Research, vol. 31, pp.1126-1134, (1997).
DOI: 10.1016/s0043-1354(96)00350-8
Google Scholar
[11]
C. Turchiuli, C. Fargues. Influence of structural properties of alum and ferric flocs on sludge dewaterability,. Chemical Engineering Journal, vol. 103, pp.123-131, (2004).
DOI: 10.1016/j.cej.2004.05.013
Google Scholar
[12]
L. Wolny, P. Wolski and I. Zawieja. Rheological parameters of dewatered sewage sludge after conditioning,. Desalination, vol. 222, pp.382-387, (2008).
DOI: 10.1016/j.desal.2007.01.175
Google Scholar
[13]
C.P. Chu, B. Chang, and G.S. Liao. Observations on change in ultrasonically treated waste activated sludge,. Water Research, vol. 35, pp.1038-1046, (2001).
DOI: 10.1016/s0043-1354(00)00338-9
Google Scholar
[14]
R. Dewila, J. Baeyensa, R. Goutvrind. The use of ultrasonics in the treatment of waste activated sludge,. Chinese J. Chem. Eng, vol. 14, pp.105-113, (2006).
DOI: 10.1016/s1004-9541(06)60045-1
Google Scholar
[15]
E. Liwarska-Bizukojc, M. Bizukojc. Digital image analysis to estimate the influence of sodium dodecylsulphate on activated sludge flocs., Process Biochemistry, vol. 40, pp.2067-2072, (2005).
DOI: 10.1016/j.procbio.2004.07.020
Google Scholar
[16]
Z.J. Wang, W. Wang. Thermal hydrolysis test of surplus sludge,. China Environmental Science, vol. 25, pp.56-60, (2005).
Google Scholar
[17]
S. Glendinning, J. Lamont-Black, C.J.F.P. Jones. Treatment of sewage sludge using electrokinetic geosynthetics,. Journal of Hazardous Materials vol. A139, pp.491-499, (2007).
DOI: 10.1016/j.jhazmat.2006.02.046
Google Scholar