[1]
M. Ahmaruzzaman, A review on the utilization of fly ash, Progress in Energy and Combustion Science 36 (2010) 327-363.
DOI: 10.1016/j.pecs.2009.11.003
Google Scholar
[2]
China Resources Comprehensive Utilization Report. 2012. 8-9.
Google Scholar
[3]
R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel 97 (2012) 1–23.
DOI: 10.1016/j.fuel.2012.03.024
Google Scholar
[4]
S.V. Vassilev, C.G. Vassileva, A newapproach for the classification of coal fly ashes basedon their origin, composition, properties, and behavior, Fuel 86 (2007) 1490–1512.
DOI: 10.1016/j.fuel.2006.11.020
Google Scholar
[5]
M.J. McCarthy, T.K. Dhir, Towards maximizing the use of fly ash as a binder in concrete, Cement Concrete Res. 78 (1999) 121–132.
DOI: 10.1016/s0016-2361(98)00151-3
Google Scholar
[6]
T. Takada, et al., Utilization of coal ash from fluidised bed incineration boilers as road base material, Resources Conservat. Recycling 14 (1995) 69-77.
DOI: 10.1016/s0921-3449(95)80001-8
Google Scholar
[7]
Proceedings of the 26th Mid-Atlantic Industrial Waste Conference, Technomat Publishing, 1994, p.567–575.
Google Scholar
[8]
A.E. Torma, Extration of aluminum for fly ash, Metals Berlin 37(6) (1983) 589-592.
Google Scholar
[9]
R.H. Matjie, J.R. Bunt, J.H. P van Heerden, Extration of alumina from coal fly ash generated from a selected low rank bituminous South African coal, Minerals Engineering 18 (2005) 299-310.
DOI: 10.1016/j.mineng.2004.06.013
Google Scholar
[10]
J. Kumaoto, Recovery of metal oxides from fly ash, Kobelco Technology Review 7 (1990) 53-57.
Google Scholar
[11]
N. Matzing H. A simple kinetic model of PCDD/F formation by De Novo synthesis. Chemosphere 2001; 44: 1497-503.
DOI: 10.1016/s0045-6535(00)00374-x
Google Scholar
[12]
Joseph J. Biernacki, Narendar R. Mogulla, Jennifer Bollig, Martin Bijou, Kinetics of carbon oxidation from fly ash, Fuel, Volume 89, Issue 5, 2010, 1077-1086.
DOI: 10.1016/j.fuel.2009.11.033
Google Scholar
[13]
Reyes J.A., Conesa J. A., Marcilla A. et al. Solid-liquid equilibrium thermodynamics: Cheeking stability in multiphase systems using the gibbs energy funetion [J]. Industrial and Engineering Chemistry Researeh, 2001, 40(3): 902一907.
DOI: 10.1021/ie000435v
Google Scholar
[14]
MeGlashan M. L. Chemical Thermodynamics [M]. New York: Academic Press, 1978: 72-86.
Google Scholar
[15]
N J. Prasad, A. Garg, T.K. De, M.S. Mukhopadhyay, Sintering and characterization of Al2O3-chromite compacts, in: Proceedings of Book of IV Ceramic Congress with International Participation, Eskis¸ehir, Turkey, (September 1998), p.207–214.
Google Scholar
[16]
B. G. Kutchko and A. G. Kim. Fly ash characterization by SEM-EDS, Fuel, 2006, 85, 2537–2554.
DOI: 10.1016/j.fuel.2006.05.016
Google Scholar
[17]
J 17. G. H. Bai, W. Teng, X. G. Wang, H. Zhang and P. Xu. Processing and kinetics studies on the alumina enrichment of coal fly ash by fractionating silicon dioxide as nano particles, Fuel Process. Technol., 2010, 91, 175–184.
DOI: 10.1016/j.fuproc.2009.09.010
Google Scholar
[18]
N. Yang, W. Hai. The Handbook of Inorganic Metalloid Materials Atlas. Wuhan University of Technology Press, Wuhan, (2001).
Google Scholar
[19]
Yanxia Guo, Yaoyao Li, Fangqin Cheng, Miao Wang, Xuming Wang, Role of additives in improved thermal activation of coal fly ash for alumina extraction, Fuel Processing Technology, Volume 110, 2013, 114-121.
DOI: 10.1016/j.fuproc.2012.12.003
Google Scholar
[20]
A. Khawam, D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals, J. Phys. Chem. B 110 (2006) 17315-17328.
DOI: 10.1021/jp062746a
Google Scholar
[21]
J. Beretka, Kinetic analysis of solid-state reactions between powdered reactants, J. Am. Ceram. Soc. 67 (1984) 615-620.
DOI: 10.1111/j.1151-2916.1984.tb19605.x
Google Scholar
[22]
Koga, N., Criado, J.M. Kinetic analyses of solid-state reactions with a particle-size distribution (1998) Journal of the American Ceramic Society, 81 (11). 2901-2909.
DOI: 10.1111/j.1151-2916.1998.tb02712.x
Google Scholar