Study on the Spatial Connectivity and Distribution of the Landscape for Maoershan Region in Heilongjiang Province

Article Preview

Abstract:

The spatial distribution of the landscape types for Maoershan region was found by the analysis of landscape nearest neighbor index and landscape connectivity index with ARC/INFO. The results showed that there were great difference of landscape connectivity between woodland and non-woodland; the nearest neighbor index of plantation was lower than that of natural forest; and the landscape pattern of natural forest were nearly the random distribution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

3987-3993

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.C. Newton, C. Echeverría, E. Cantarello, and G. Bolados. (2011) Projecting impacts of human disturbances to inform conservation planning and management in a dryland forest landscape. Biol. Conserv. 144: 1949-(1960).

DOI: 10.1016/j.biocon.2011.03.026

Google Scholar

[2] Cantarello, E., Newton, A.C., Hill, R.A., Tejedor-Garavito, N., Williams-Linera, G., López-Barrera, F., Manson, R.H., and Golicher, D.J., (2011).

DOI: 10.1016/j.ecolmodel.2010.12.019

Google Scholar

[3] Echeverría, C., Newton, A.C., Lara, A., Rey-Benayas, J.M., and Coomes, D., (2007) Impacts of forest fragmentation on species composition and forest structure in the temperate landscape in southern Chile. Global. Ecol. Biogeogr. 16: 426-439.

DOI: 10.1111/j.1466-8238.2007.00311.x

Google Scholar

[4] Francesco Orsi, Davide Geneletti. (2010) Identifying priority areas for Forest Landscape Restoration in Chiapas (Mexico): An operational approach combining ecological and socioeconomic criteria. Landscape Urban Plan, 94: 20-30.

DOI: 10.1016/j.landurbplan.2009.07.014

Google Scholar

[5] Zhang, D.L., Mao, Z.J., Zhu, S.Y., and Zhou, B. (2008) Litterfalls of 6 Major Forest Stands at Maoershan Mountain of Heilongjiang Province. Bulletin of Botanical Research, 28 (1): 104-108.

Google Scholar

[6] Wang, C.K. (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manag., 222: 9-16.

DOI: 10.1016/j.foreco.2005.10.074

Google Scholar

[7] Cipollini, K., Maruyama, A.L., and Zimmerman, C.L. (2005) Planning for restoration: adecision analysis approach to prioritization. Restor. Ecol. 13: 460-470.

DOI: 10.1111/j.1526-100x.2005.00057.x

Google Scholar

[8] Trejo, I., Dirzo, R. (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol. Conserv. 94: 133-142.

DOI: 10.1016/s0006-3207(99)00188-3

Google Scholar

[9] Luna Vega, I., Alcantara Ayala, O., Espinosa Organista, D., and Morrone, J.J. (1999).

Google Scholar

[10] Hong S. He, Jian Yang, Stephen R. Shifley, and Frank R. Thompson. (2011) Challenges of forest landscape modeling—Simulating large landscapes and validating results. Landscape Urban Plan, 100: 400-402.

DOI: 10.1016/j.landurbplan.2011.02.019

Google Scholar

[11] Shifley, S.R., Thompson, F.R., Dijak, W.D., and Fan, Z.F. (2008).

Google Scholar

[12] Li, H.B., Wu, Y.G. (1992) Mathematic Research Methods of Landscape Ecology. China Science and Technology Press, Beijing pp: 209-233.

Google Scholar

[13] Wu, J.G. (2000) Landscape Ecology-Pattern, Process, Scale and Hierarchy, Higher Education Press, Beijing pp: 100-109.

Google Scholar

[14] Guo, J.P. (2001) Forest landscape ecology research, Beijing University Press, Beijing pp: 196-200.

Google Scholar

[15] Valéry Gond, Vincent Freycon, Jean-Francois Molino, et al. (2011) Broad-scale spatial pattern of forest landscape types in the Guiana Shield. Int J Appl Earth Obs, 13: 357-367.

DOI: 10.1016/j.jag.2011.01.004

Google Scholar

[16] Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B., Gross, P., Bonnefond, J.M., Elbers, J., Longdoz, B., Epron, D., Guehl, J.M., and Granier, A., (2008).

DOI: 10.1111/j.1365-2486.2008.01610.x

Google Scholar

[17] Clark, D.B., Clark, D.A. (2000) Landscape-scale variation in forest structure and biomass in a tropical rain forest. For. Ecol. Manag., 137: 185-198.

DOI: 10.1016/s0378-1127(99)00327-8

Google Scholar

[18] Malhi, Y., Wood, D., Baker, T.R., Wright, J., et al. (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biol., 12: 1107-1138.

DOI: 10.1111/j.1365-2486.2006.01120.x

Google Scholar

[19] Robert M. Scheller, Dong Hua, Paul V. Bolstad, Richard A. Birdsey, David J. Mladenoff. (2011).

Google Scholar

[20] Bricklemyer, R.S., Miller, P.R., Turk, P.J., Paustian, K., Keck, T., and Nielsen, G.A. (2007) Sensitivity of the Century model to scale-related soil texture variability. Soil Sci. Soc. Am. J., 71: 784-792.

DOI: 10.2136/sssaj2006.0168

Google Scholar

[21] Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S., Kirchner, T., Menaut, J.C., Seastedt, T., Garcia Moya, E., Kamnalrut, A., and Kinyamario, J.I. (1993).

DOI: 10.1029/93gb02042

Google Scholar

[22] Douglas J. Shinneman, Meredith W. Cornett, Brian J. Palik. (2010) Simulating restoration strategies for a southern boreal forest landscape with complex land ownership patterns. For. Ecol. Manag., 259: 446-458.

DOI: 10.1016/j.foreco.2009.10.042

Google Scholar

[23] Gustafson, E.J., Lytle, D.E., Swaty, R., Loehle, C. (2007) Simulating the cumulative effects of multiple forest management strategies on landscape measures of forest sustainability. Landscape Ecol., 22: 141–156.

DOI: 10.1007/s10980-006-9017-y

Google Scholar

[24] Yves Laumonier, Andreas Edin, Markku Kanninen, and Agung W. Munandar, (2010).

Google Scholar

[25] Melany C. Fisk, Timothy J. Fahey, Peter M. Groffman. (2010) Carbon resources, soil organisms, and nitrogen availability: Landscape patterns in a northern hardwood forest. For. Ecol. Manag., 260: 1175-1183.

DOI: 10.1016/j.foreco.2010.07.009

Google Scholar