Biodegradation of Kraft Lignin by a Bacterial Strain Sphingobacterium sp. HY-H

Article Preview

Abstract:

A lignin-degrading bacterium was isolated on mineral salt medium amended by lignosulfonate (L-MSM) agar from the activated sludge of a pulp and paper mill wastewater treatment plant and identified as Sphingobacterium sp. HY-H by biochemical tests and 16S rRNA gene sequencing. The maximum kraft lignin (KL) degradation capability of strain HY-H was determined to be 28.2% on a COD basis under the optimal conditions of pH 7.0, temperature 30°C, and KL to nitrogen (as NH4Cl) ratio of 2 by mass. Moreover, growth kinetic studies showed the KL tolerance of strain HY-H was relatively high and the analysis of KL degradation products by GC-MS revealed the formation of low-molecular-weight aromatic compounds (LMWACs), such as guaiacol, vanillin and vanillyl alcohol, indicating that the strain HY-H can oxidize guaiacyl (G) units and syringyl (S) units in lignin structure. In addition, some low molecular ketone compounds such as 4-hydroxy-2-butanone and methyl vinyl ketone were detected in the inoculated sample after 48h, further validating the partial but possible degradation of KL by strain HY-H.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

548-553

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Boerjan, J. Ralph and M. Baucher: Ann. Rev. Plant. Physiol. Mol. Bio. Vol. 54 (2003), p.519.

Google Scholar

[2] A.V. Pranovich, M. Reunanen, R. Sjoholm and B. Holmbom: J. Wood. Chem. Technol. Vol. 25 (2005), p.109.

Google Scholar

[3] T.D.H. Bugg, M. Ahmad, E.M. Hardiman and R. Rahmanpour: Nat. Prod. Rep. Vol. 28 (2011a), p.1883.

Google Scholar

[4] J. Li, H. Yuan and J. a. Yang: Frontiers of Biology in China. Vol. 4 (2009), p.29.

Google Scholar

[5] R. Chandra, A. Abhishek and M. Sankhwar: Bioresour. Technol. Vol. 102 (2011), p.6429.

Google Scholar

[6] A. Raj, R. Chandra, M.M.K. Reddy, H.J. Purohit and A. Kapley: World J. Microbiol. Biotechnol. Vol. 23 (2007a), p.793.

Google Scholar

[7] A. Raj, R. Chandra, M.M.K. Reddy, H.J. Purohit and A. Kapley: Biodegradation. Vol. 18 (2007b), p.783.

Google Scholar

[8] A. Raj, M.M.K. Reddy and R. Chandra: Int. Biodeterior. Biodegrad. Vol. 59 (2007c), p.292.

Google Scholar

[9] Y. Chen, L. Chai, C. Tang, Z. Yang, Y. Zheng and H. Zhang: Bioresour. Technol. Vol. 123 (2012a), p.682.

Google Scholar

[10] H. Morii, K. Nakamiya and S. Kinoshita: J. Ferment. Bioeng. Vol. 80 (1995), p.296.

Google Scholar

[11] F. Perestelo, M.A. Falcon and G. de la Fuente: J. Ferment. Bioeng. Vol. 68 (1989), p.151.

Google Scholar

[12] Y. Chen, L. Chai, Y. Zhu and Z. Yang: J. Appl. Microbiol. Vol. 112 (2012b), p.900.

Google Scholar

[13] R. Chandra, A. Raj, H.J. Purohit and A. Kapley: Chemosphere. Vol. 67(2007), p.839.

Google Scholar

[14] F. Perestelo, M.A. Falcon, A. Carnicero and G. de la Fuente: Biotechnol. Lett. Vol. 16 (1994), p.299.

Google Scholar

[15] F. Perestelo, A. Rodriquez, R. Perez, A. Carnicero, G. de la Fuente and M.A. Falcon: World J. Microbiol. Biotechnol. Vol. 12 (1996), p.111.

Google Scholar

[16] J. Brosius, M.L. Palmer, P.J. Kennedy and H.F. Noller: Proc. Nat. Acad. Sci. USA. Vol. 75 (1978), p.4801.

Google Scholar

[17] G. Taguchi: Unipub/Kraus International Publications, White Plains, NY (1987).

Google Scholar

[18] K.A. Onysko, H.M. Budman and C.W. Robinson: Biotech. Bioeng. Vol. 70 (2000), p.291.

Google Scholar

[19] P. Christen, A. Vega, L. Casalot, G. Simon and R. Auria: Biochem. Eng. J. Vol. 62 (2012), p.56.

Google Scholar

[20] D.L. Crawford: Biotech. Bioeng. Vol. 11 (1981), p.275.

Google Scholar