[1]
A.K. Hotchkiss, et al., Fifteen years after Wingspread, -environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go, Toxicol. Sci. 105 (2008) 235-259.
DOI: 10.1093/toxsci/kfn030
Google Scholar
[2]
E. Swedenborg, et al., Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders, J. Mol. Endocrinol. 43 (2009) 1-10.
Google Scholar
[3]
M.A. Ottinger, et al., Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds, Brain Res. Rev. 57 (2008) 376-385.
DOI: 10.1016/j.brainresrev.2007.08.011
Google Scholar
[4]
Z.H. Yang, X.J. Zhang and Z.H. Cai, Toxic effects of several phthalate esters on the embryos and larvae of abalone Haliotis diversicolor supertexta, Chin. J. Oceanol. Limnol. 27 (2009) 395-399.
DOI: 10.1007/s00343-009-9103-5
Google Scholar
[5]
E. Diamanti-Kandarakis, et al., Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement, Endocr. Rev. 30 (2009) 293-342.
DOI: 10.1210/er.2009-0002
Google Scholar
[6]
I. Iavicoli, L. Fontana and A. Bergamaschi, The Effects of Metals as Endocrine Disruptors, J. Toxicol. Env. Heal. B 12 (2009) 206-223.
Google Scholar
[7]
F.E. Murdoch and J. Gorski, The role of ligand in estrogen receptor regulation of gene expression, Mol. Cell. Endocrinol. 78 (1991) 103-108.
Google Scholar
[8]
Y.L. Zhao, et al., Mechanism of transcriptional regulation of LRP16 gene expression by 17-beta estradiol in MCF-7 human breast cancer cells, J. Mol. Endocrinol. 34 (2005) 77-89.
DOI: 10.1677/jme.1.01628
Google Scholar
[9]
W. Korner, et al., Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage plant effluents, Sci. Total Environ. 225 (1999) 33-48.
DOI: 10.1016/s0048-9697(98)00330-1
Google Scholar
[10]
S.C. Brooks, E.R. Locke and H.D. Soule, Estrogen receptor in a human cell line (MCF-7) from breast carcinoma, J. Biol. Chem. 248 (1973) 6251-6253.
DOI: 10.1016/s0021-9258(19)43537-0
Google Scholar
[11]
H.D. Soule, et al., A human cell line from a pleural effusion derived from a breast carcinoma, J. Natl. Cancer Inst. 51 (1973) 1409-1416.
DOI: 10.1093/jnci/51.5.1409
Google Scholar
[12]
W.V. Welshons, et al., Estrogenic activity of phenol red, Mol. Cell. Endocrinol. 57 (1988) 169-178.
Google Scholar
[13]
K.B. Horwitz, M.E. Costlow and W.L. McGuire, MCF-7; a human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors, Steroids 26 (1975) 785-795.
DOI: 10.1016/0039-128x(75)90110-5
Google Scholar
[14]
C.M. Klinge, Estrogen receptor interaction with co-activators and co-repressors, Steroids 65 (2000) 227-251.
DOI: 10.1016/s0039-128x(99)00107-5
Google Scholar
[15]
R.R. Newbold, et al., Cell response endpoints enhance sensitivity of the immature mouse uterotropic assay, Reprod. Toxicol. 15 (2001) 245-252.
DOI: 10.1016/s0890-6238(01)00130-7
Google Scholar
[16]
A.M. Soto, et al., The E-Screen Assay as a Tool to Identify Estrogens - an Update on Estrogenic Environmental-Pollutants, Environ. Health Persp. 103 (1995) 113-122.
DOI: 10.1289/ehp.95103s7113
Google Scholar
[17]
T.G. Preuss, et al., Nonylphenol isomers differ in estrogenic activity, Environ. Sci. Technol. 40 (2006) 5147-5153.
DOI: 10.1021/es060709r
Google Scholar
[18]
T.G. Preuss, et al., Some nonylphenol isomers show antiestrogenic potency in the MVLN cell assay, Toxicol. in Vitro 24 (2010) 129-134.
DOI: 10.1016/j.tiv.2009.08.017
Google Scholar
[19]
P. Balaguer, et al., Reporter cell lines to study the estrogenic effects of xenoestrogens, Sci. Total Environ. 233 (1999) 47-56.
Google Scholar
[20]
M.T. Zenzes, et al., Cadmium accumulation in follicular fluid of women in in vitro fertilization-embryo transfer is higher in smokers, Fertil. Steril. 64 (1995) 599-603.
DOI: 10.1016/s0015-0282(16)57799-1
Google Scholar
[21]
D.W. Singleton, et al., Bisphenol-A and estradiol exert novel gene regulation in human MCF-7 derived breast cancer cells, Mol. Cell. Endocrinol. 221 (2004) 47-55.
DOI: 10.1016/j.mce.2004.04.010
Google Scholar
[22]
L. Dong, et al., Mechanisms of transcriptional activation of bcl-2 gene expression by 17beta-estradiol in breast cancer cells, J. Biol. Chem. 274 (1999) 32099-32107.
DOI: 10.1074/jbc.274.45.32099
Google Scholar
[23]
A.K. Hotchkiss, et al., In utero exposure to the environmental androgen trenbolone masculinizes female Sprague-Dawley rats, Toxicol. Lett. 174 (2007) 31-41.
DOI: 10.1016/j.toxlet.2007.08.008
Google Scholar
[24]
J. Szelei, et al., Endocrinology 138 (1997) 1406-1412.
Google Scholar
[25]
W. Korner, et al., Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals, Environ. Health Persp. 112 (2004) 695-702.
DOI: 10.1289/ehp.6715
Google Scholar
[26]
V.S. Wilson, et al., A novel cell line, MDA-kb2, that stably expresses an androgen- and glucocorticoid-responsive reporter for the detection of hormone receptor agonists and antagonists, Toxicol. Sci. 66 (2002) 69-81.
DOI: 10.1093/toxsci/66.1.69
Google Scholar
[27]
B. Terouanne, et al., A stable prostatic bioluminescent cell line to investigate androgen and antiandrogen effects, Mol. Cell. Endocrinol. 160 (2000) 39-49.
DOI: 10.1016/s0303-7207(99)00251-8
Google Scholar
[28]
A. Kortenkamp, Ten Years of Mixing Cocktails: A Review of Combination Effects of Endocrine-Disrupting Chemicals, Environ. Health Persp. 115 (2007) 98-105.
DOI: 10.1289/ehp.9357
Google Scholar
[29]
N. Rajapakse, et al., Deviation from additivity with estrogenic mixtures containing 4-nonylphenol and 4-tert-octylphenol detected in the E-SCREEN assay, Environ. Sci. Technol. 38 (2004) 6343-6352.
DOI: 10.1021/es049681e
Google Scholar
[30]
E. Silva, N. Rajapakse and A. Kortenkamp, Something from nothing, - Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects, Environ. Sci. Technol. 36 (2002) 1751-1756.
DOI: 10.1021/es0101227
Google Scholar
[31]
J. Payne, M. Scholze and A. Kortenkamp, Mixtures of four organochlorines enhance human breast cancer cell proliferation, Environ. Health Persp. 109 (2001) 391-397.
DOI: 10.1289/ehp.01109391
Google Scholar
[32]
E. Silva, M. Scholze and A. Kortenkamp, Activity of Xenoestrogens at Nanomolar Concentrations in the E-Screen Assay, Environ. Health Persp. 115 (2007) 91-97.
DOI: 10.1289/ehp.9363
Google Scholar
[33]
J. Katoh and H. Taniguchi, Experimental animal models of obesity, Nippon Rinsho 53 (1995) 599-603.
Google Scholar
[34]
L.Y. Zhong, et al., Interference of Xenoestrogen o, p '-DDT on the Action of Endogenous Estrogens at Environmentally Realistic Concentrations, B. Environ. Contam. Tox. 90 (2013) 591-595.
DOI: 10.1007/s00128-013-0976-9
Google Scholar
[35]
M. Heneweer, et al., Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells, Toxicol. Appl. Pharmacol. 208 (2005) 170-177.
DOI: 10.1016/j.taap.2005.02.006
Google Scholar
[36]
R. Dip, et al., Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens, Food Chem Toxicol 47 (2009) 787-795.
DOI: 10.1016/j.fct.2009.01.008
Google Scholar
[37]
C. Bicchi, et al., Analysis of environmental endocrine disrupting chemicals using the E-screen method and stir bar sorptive extraction in wastewater treatment plant effluents, Sci. Total Environ. 407 (2009) 1842-1851.
DOI: 10.1016/j.scitotenv.2008.11.039
Google Scholar
[38]
A.M. Soto, et al., Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in eastern Nebraska, USA, Environ. Health Persp. 112 (2004) 346-352.
DOI: 10.1289/ehp.6590
Google Scholar