Nickel Oxide Nanoparticles Induce Oxidative Stress and Morphological Changes on Marine Chlorella vulgaris

Article Preview

Abstract:

The status of oxidative stress of marine Chlorella vulgaris was investigated via measuring the content of H2O2, MDA, SOD and CAT in cells after 72h NiO nanoparticles (nNiO) exposure. Morphological changes of algal cells were also determined by transmission electron microscopy (TEM). The results showed that nNiO induced the ROS generation and stimulated the antioxidant defense system of algae. Significant increases (p < 0.01) in MDA level and SOD activity were found after 72h 10 mg L-1 nNiO treatment. H2O2 content and CAT activity also increased under higher concentration treatments although non-significant. The disruption of plasma membrane and the disordered thylakoid lamella of algal cells were found under nNiO exposure, which indicated cell morphological changes. Our results implied that oxidative damage was one of toxic causes of nanoparticles on algae. It also indicates the potential impacts on aquatic biota by nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 955-959)

Pages:

956-960

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.L. Colvin: Nat. Biotechnol Vol. 21 (2003), p.1160.

Google Scholar

[2] C . Sayes, A. Gobin, K. Ausman, J. Mendez, J. West and V. Colvin: Biomaterials Vol. 26 (2005), p.7587.

DOI: 10.1016/j.biomaterials.2005.05.027

Google Scholar

[3] M.N. Moore: Environ. Int Vol. 32(2006), p.967.

Google Scholar

[4] M.R. Wiesner, G.V. Lowry, P. Alvarez, D . Dionysiou and P. Biswas: Environ. Sci Vol. 13 (2006), p.4336.

Google Scholar

[5] K . Hund-Rinke and M . Simon: Environ. Sci. Pollut. Res Vol. 13 (2006), p.225.

Google Scholar

[6] N. Gong, K.S. Shao, W. Feng, Z.Z. Lin, C.H. Liang and Y.Q. Sun: Chemosphere Vol. 83 (2011), p.510.

Google Scholar

[7] S.B. Lovern and R . Kapler: Environ. Toxicol. Chem Vol. 25 (2006), p.1132.

Google Scholar

[8] E. Oberdörster: Environ. Health Perspect Vol. 112 (2004), p.1058.

Google Scholar

[9] N.M. Franklin, N.J. Rogers, S.C. Apte, Batley, G.E. Gadd and P.S. Casey: Environ. Sci. Technol Vol. 41 (2007), p.8484.

Google Scholar

[10] V. Aruoja, H.C. Dubourguier, K. Kasemets and A. Kahru: Sci. Total Environ Vol. 407 (2009), p.1461.

Google Scholar

[11] L. Canesia, R. Fabbri, G. Gallo, D. Vallotto, A. Marcomini and G. Pojana: Aquatic Toxicology Vol. 100 (2010), p.168.

DOI: 10.1016/j.aquatox.2010.04.009

Google Scholar

[12] A. Kahru, H. Dubourguier, I. Blinova, A. Ivask and K. Kasemets: Sensors Vol. 8 (2008), p.5153.

DOI: 10.3390/s8085153

Google Scholar

[13] M.J. Piao, K.A. Kang, I.K. Lee, H.S. Kim, S. Kim and J.Y. Choi: Toxicology Letters Vol. 201 (2011), p.92.

Google Scholar

[14] F. Wang, F. Gao, M.B. Lan, H.H. Yuan H. H, Y.P. Huang and J.W. Liu: Toxicology in Vitro Vol. 23 (2009), p.808.

Google Scholar

[15] R.K. Shukla, V. Sharma, A.K. Pandey, S. Singh, S. Sultana and A. Dhawan: Toxicology in Vitro Vol. 25 (2011), p.231.

Google Scholar

[16] A. Salimi, E. Sharifi, A. Noorbakhsh and S. Soltanian: Biophys. Chem Vol. 125 (2007), p.540.

Google Scholar

[17] K.V. Rao and C.S. Sunandana: J. Nanosci. Nanotechnol Vol. 8 (2008), p.4247.

Google Scholar

[18] J.F. Reeves, S.J. Davies, N.J.F. Dodd and A.N. Jha: Mutation research-fundamental and molecular mechanisms of mutagenesis Vol. 640 (2008), p.113.

Google Scholar

[19] J.E. Choi, S. Kim, J.E. Ahn, P.J. Youn, J.S. Kang, K. Park, J. Yi and D.Y. Ryu: Aquatic Toxicology Vol. 100 (2010), p.151.

Google Scholar

[20] J.X. Wang, X.Z. Zhang, Y.S. Chen and M. Sommerfeld: Chemosphere Vol. 73(2008), p.1121.

Google Scholar