Complete Benzene Oxidation over Colloidal Gold Catalysts Supported on Nanostructure Zinc Oxide

Article Preview

Abstract:

The catalytic activities of various nanometer metal oxides (ZnO, CeO2, ZrO2, Al2O3, Co3O4, MgO) supported colloidal gold catalysts with self-designed equipment were evaluated and compared for benzene catalytic oxidation. The results showed that ZnO was the most activive support of the colloidal gold among these nanometer metal oxides. The effects of Au/ZnO on the activity for benzene oxidation were investigated at 50- 300°C. The optimal gold loading was 2 wt%. The Au/ZnO was characterized using BET, XRD, and TEM methods. The XRD patterns and TEM image showed that gold nanoparticles were well dispersed on the surface of ZnO, and the mean diameter was 3.1±0.81 nm. The gaseous products of benzene oxidation and the adsorbed species on Au/ZnO catalyst surface were characterized with FTIR and GC-MS. It was proved that benzene was completely oxidized into CO2 and H2O over the Au/ZnO catalyst at low temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-27

Citation:

Online since:

January 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.C. Moretti and N. Mukhopadhyay: Chem. Eng. Prog. Vol. 7 (1993), p.20.

Google Scholar

[2] M. Haruta, A. Ueda, S. Tsubota and R.M.T. Sanchez: Catal. Today Vol. 29 (1996), p.443.

Google Scholar

[3] M. Jia, Y. Shen, C. Li, Z. Bao and S. Sheng: Catal. Lett. Vol. 99(2005), p.235.

Google Scholar

[4] B. Chen: Catal. Today Vol. 30(1996), p.189.

Google Scholar

[5] Q.H. Xia, K. Hiaiat and S. Kawi: Catal. Today Vol. 68(2001), p.255.

Google Scholar

[6] J.C.S. Wu, Z.A. Lin, F.M. Tsai and J.W. Pan: Catal. Today Vol. 63(2000), p.419.

Google Scholar

[7] X.Z. Yang, Y.N. Shen and Z.F. Yuan: J. Mole. Catal. A Vol. 237(2005), p.224.

Google Scholar

[8] L. Becker and H. Förster: Appl. Catal. B Vol. 17(1998), p.43.

Google Scholar

[9] J.C.S. Wu and T.Y. Chang: Catal. Today Vol. 44 (1998), p.111.

Google Scholar

[10] M. Haruta: Gold Bull. Vol. 37 (2004), p.27.

Google Scholar

[11] D. Andreeva, T. Tabakova, V. Idakiev and A. Naydenov: Gold Bull. Vol. 31(1998), p.105.

Google Scholar

[12] V. Idakiev,L. Ilieva, D. Andreeva, et al.: Appl. Catal. A Vol. 243(2003), p.25.

Google Scholar

[13] D. Andreeva, T. Tabakova, L. Ilieva, et al.: Appl. Catal. A Vol. 209(2001), p.291.

Google Scholar

[14] D. Andreeva, R. Nedyalkova, L. Ilieva, et al.: Appl. Catal. A Vol. 246(2003), p.29.

Google Scholar

[15] D. Andreeva, R. Nedyalkova, L. Ilieva, et al.: Appl. Catal. B Vol. 52(2004), p.157.

Google Scholar

[16] T.F. Garetto, C.R. Apesteguía: Appl. Catal. B Vol. 32(2001), p.83.

Google Scholar

[17] S. Ordóňez, L. Bello, H. Sastre, et al.: Appl. Catal. B Vol. 38(2002), p.139.

Google Scholar

[18] D. Andreeva, R. Nedyalkova, L. Ilieva, et al.: Appl. Catal. A Vol. 246 (2003), p.29.

Google Scholar

[19] D. Andreeva, V. Idakiev, T. Tabakova, et al.: A. Bourlinos and A Travlos: Catal. Today Vol. 72 (2002), p.51.

DOI: 10.1016/s0920-5861(01)00477-1

Google Scholar

[20] Y. Li, Q. Fu and M. F. Stephanopoulos: Appl. Catal. B Vol. 27(2000), p.179.

Google Scholar

[21] Q. Fu, S. Kudriavtseva, H. Saltsburg and M. F. Stephanopolos: Chem. Eng.J. Vol. 93(2003), p.41.

Google Scholar

[22] T. Bunluesin, R.J. Gorte and G.W. Graham: Appl. Catal. B Vol. 15(1998), p.107.

Google Scholar

[23] A.A. Barresi and G. Baldi: Ind. Eng. Chem. Res. Vol. 33(1994), p.2964.

Google Scholar

[24] K.T. Chuang, S. Cheng and S. Tong: Ind. Eng. Chem. Res. Vol. 31(1992), p.2466.

Google Scholar

[25] I. Dobrosz, K. Jiratova, V. Pitchon and J.M. Rynkowski: J. Mole. Catal A Vol. 234(2005), p.187.

Google Scholar