Numerical Study of Laminar Flow and Convection Heat Transfer of Nanofluids inside Circular Tube

Article Preview

Abstract:

This paper presents a numerical study on laminar flow and convective heat transfer of nanofluids in a circular tube under constant wall heat flux boundary condition. Single phase model is used for simulating the heat transfer and flow behaviors of three different nanofluids. The effects of nanoparticle concentrations, nanoparticle diameter, nanoparticle material and Reynolds number on the Nusselt number and wall shear stress of nanofluids are determined and discussed in details. The comparison of Nusselt number of CuO-EG/water, SiO2-EG/water and Al2O3-EG/water nanofluids are presented. The results show that Nusselt number clearly increases with an increase in the nanoparticle concentration and flow Reynolds number, while the nanoparticle diameter has an opposite effect on the Nusselt number. Compared to SiO2-EG/water and Al2O3-EG/water nanofluids, CuO-EG/water nanofluids give higher Nusselt number with the same nanoparticle concentrations. The results also show that wall shear stress increases with increasing nanoparticle volume concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 960-961)

Pages:

299-303

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, New York, (1995) 99-105.

Google Scholar

[2] P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), International Journal of Heat and Mass Transfer 45 (2002) 855-863.

DOI: 10.1016/s0017-9310(01)00175-2

Google Scholar

[3] Y. M. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids, Journal of Heat Transfer 125 (2003) 151-155.

DOI: 10.1115/1.1532008

Google Scholar

[4] D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, International Journal of Heat and Mass Transfer 47 (2004) 5181-5188.

DOI: 10.1016/j.ijheatmasstransfer.2004.07.012

Google Scholar

[5] K. V. Sharma, L. Syam Sundar, P. K. Sarma, Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert, International Communications in Heat and Mass Transfer 36 (2009).

DOI: 10.1016/j.icheatmasstransfer.2009.02.011

Google Scholar

[6] Y. R. He, Y. B. Men, Y. H. Zhao, H. L. Lu, Y. L. Ding, Numerical investigation into the convective heat transfer of TiO2 nano fl uids flowing through a straight tube under the laminar flow conditions, Applied Thermal Engineering 29 (2009).

DOI: 10.1016/j.applthermaleng.2008.09.020

Google Scholar

[7] M. Izadi, A. Behzadmehr , D. Jalali-Vahid, Numerical study of developing laminar forced convection of a nanofluid in an annulus, International Journal of Thermal Sciences 48 (2009) 2119-2129.

DOI: 10.1016/j.ijthermalsci.2009.04.003

Google Scholar

[8] M. K. Moraveji, M. Darabi, S. M Hossein Haddad, R. Davarnejad, Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics, Int Commun Heat Mass Transfer 38 (2011) 1291-1295.

DOI: 10.1016/j.icheatmasstransfer.2011.06.011

Google Scholar

[9] E. Ebrahimnia-Bajestan, H. Niazmand, W. Duangthongsuk, S. Wongwises, Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime, International Journal of Heat and Mass Transfer, 54 (2011).

DOI: 10.1016/j.ijheatmasstransfer.2011.05.006

Google Scholar

[10] J. Buongiorno, Convective transport in nanofluids, Journal of Heat Transfer, 128 (2006) 240-250.

DOI: 10.1115/1.2150834

Google Scholar

[11] R. L. Hamilton, O. K. Crosser, Thermal conductivity of heterogeneous two-component system, Industrial & Engineering Chemistry Fundamentals, 1 (1962), 187-191.

DOI: 10.1021/i160003a005

Google Scholar

[12] P. K. Namburu, D. K. Das, K. M. Tanguturi, R. S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, International Journal of Thermal Sciences, 48(2009), 290-302.

DOI: 10.1016/j.ijthermalsci.2008.01.001

Google Scholar

[13] R. K. Shah, A. L. London, Laminar flow forced convection in ducts, Academic Press, New York, (1978).

Google Scholar