Overview of High Precision Adaptive Numerical Manifold Method

Article Preview

Abstract:

The core of the numerical manifold method (NMM) is a two-mesh problem description. Two meshes are employed in an analysis: the mathematical mesh provides the nodes for building a finite covering of the solution domain, while the physical mesh provides the domain of integration. The NMM can deal with the continuum and discontinuous problem, and has been applied to the rock mechanics and engineering widely. This paper introduces the research progress of the NMM in the basic theory and application aspects. The adaptive mesh generation of NMM is discussed. The adaptive finite cover mesh reconstruction technology is given.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 962-965)

Pages:

2988-2991

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Zhang Xiangwei, Zhang Zhengrong , Lv Wenge, LuoShaoMing. Numerical manifold method research and application progress. Progress in mechanics, 2010, 40 (1) : 1-12.

Google Scholar

[2] G. H. Shi. Manifold method of material analysis. Transaction of the Ninth Army Conference on Applied Mathematics and Computing Minneapolis, USA, (1992).

Google Scholar

[3] K. Shyu, M. R. Salami. Manifold method with four-node isoperimetric finite element method. Working Forum on the Manifold of Material Analysis. California, USA, 1995, 1: 165-182.

Google Scholar

[4] Wang Zhiyin, Li Yunpeng. Numerical manifold method and its research progress. Progress in mechanics, 2003 (2) : 261-266.

Google Scholar

[5] J. S. Lin. Extensions to the discontinuous deformation analysis for jointed rock masses and other blocky systems. Ph.D. University of Colorado, (1995).

Google Scholar

[6] Luan Maotian, Fan Cheng, Li Yong , Yang Qing. Finite cover the radial point interpolation method and its application in the geotechnical problems. Rock and soil mechanics, 2006, 27 (12) : 2143-2148.

Google Scholar

[7] H. Gao, Y. Cheng. A Complex variable meshless manifold method for fracture problems. International Journal of Computational Methods, 2010, 7(1): 55-81.

DOI: 10.1142/s0219876210002064

Google Scholar

[8] Wei Gaofeng, Feng Wei. An Incompatible Numerical Manifold Method for Elasticity Problem. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 79-88.

Google Scholar

[9] Wei Gaofeng, Feng Wei. Wilson Incompatible Numerical Manifold Method. Rock Mechanics, 2006, 27(2): 189-192.

Google Scholar

[10] K. Terada, M. Kurumatani. Performance assessment of generalized elements in the finite cover method. Finite Elem Anal Des, 2004, 41(2): 111-132.

DOI: 10.1016/j.finel.2004.05.001

Google Scholar

[11] K. Terada, M. Kurumatani. Finite cover method with mortar elements for elastoplasticity problems. Comput Mech, 2005, 36(1): 45-61.

DOI: 10.1007/s00466-004-0641-6

Google Scholar

[12] Zhang Dalin, Luan Maotian, Yang Qing etc. Technology and its numerical manifold method of grid automatic subdivision method. Journal of rock mechanics and engineering, 2004, 23 (1) : 1836-1840. ].

Google Scholar

[13] Ling Dao-sheng, He Chun Jian, Ye Mao, numerical manifold method mathematical grid adaptation. Computational Mechanics, 2008, 25 (2) : 201-205.

Google Scholar

[14] Y. M. Cheng, Y. H. Zhang. Formulation of a three-dimensional numerical manifold method with tetrahedron and hexahedron elements. Rock Mechanics and Rock Engineering, 2008, 41(2): 601-628.

DOI: 10.1007/s00603-006-0120-9

Google Scholar

[15] Q. H. Jiang, C. B. Zhou. A three-dimensional numerical manifold method based on tetrahedral meshes. Comput Struct, 2009, 87(13-14): 880-889.

DOI: 10.1016/j.compstruc.2009.03.002

Google Scholar

[16] T. Ishii, K. Terada, T. Kyoyoa. Failure analysis of quasi-brittle materials involving multiple mechanisms on fractured surfaces. Int J Numer Meth Eng, 2006, 67(7): 960-988.

DOI: 10.1002/nme.1656

Google Scholar

[17] K. Terada, A. Maruyama, M. Kurumatani. Eulerian finite cover method for quasi-static equilibrium problems of hyperelastic bodies. Commun Numer Methods Eng, 2007, 23(12): 1081-1094.

DOI: 10.1002/cnm.948

Google Scholar

[18] Xu Peng, Jin Wugen, Wan Yuanfu. Manifold Trefftz direct method. Computational Mechanics, 2008, 25 (2) : 260-264.

Google Scholar

[19] S. Li, Y. Cheng, Y. F. Wu. Numerical manifold method based on the method of weighted residuals. Computational Mechanics, 2005, 35(6): 470-480.

DOI: 10.1007/s00466-004-0636-3

Google Scholar

[20] Wei Gaofeng, Li Kaitai, Feng Wei, etc. The coordination of stability and convergence of numerical manifold method analysis. Journal of physics, 2008, 57 (2) : 639-647.

Google Scholar

[21] H. Y. Liu, S. Q. Qin. Simulation of impact failure of rock by numerical manifold method. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 587-593.

Google Scholar

[22] Shen Zhenzhong, Zheng Lei. Stability analysis method based on numerical manifold reservoir rock slope. Hydroelectric Energy, 2006, 24 (1) : 32-35.

Google Scholar

[23] H. W. Zhang, L. Zhou. Numerical manifold method for dynamic nonlinear analysis of saturated porous media. Int J Numer Anal Meth Geomech, 2006, 30 (9): 927-951.

DOI: 10.1002/nag.508

Google Scholar

[24] K. Terada, T. Ishii, T. Kyoya. Finite cover method for progressive failure with cohesive zone fracture in heterogeneous solids and structures. Comput Mech, 2007, 39(2): 191-210.

DOI: 10.1007/s00466-005-0017-6

Google Scholar

[25] K. Suzuki, H. Ohtsubo, K. Hino. Analysis of fracture mechanism using adaptive finite cover method. Nippon Kikai Cakkai Ronbunshu A, 2004, 70(1): 399-405.

Google Scholar

[26] Ren-Jow Tsay, Yaw-Jeen Chiou, and Wailin Chuang. Crack growth prediction by manifold method. Journal of Engineering Mechanics, 1999, 125(8): 884-890.

DOI: 10.1061/(asce)0733-9399(1999)125:8(884)

Google Scholar