[1]
M.K. Lee, B.I.G. Barr, An overview of the fatigue behaviour of plain and fibre reinforced concrete, Cement & Concrete Composites 26 (2004) 299–305.
DOI: 10.1016/s0958-9465(02)00139-7
Google Scholar
[2]
Z. Bažant, W.F. Schell, Fatigue Facture of High-Strength Concrete and Size Effect, ACI Materials Journal 90-M50 (1993) 472–478.
Google Scholar
[3]
Z. Bažant, K. Xu, Size Effect in Fatigue Fracture of Concrete, ACI Materials Journal 88-M46 (1991) 390–399.
Google Scholar
[4]
S. Seitl, Z. Keršner, V. Bílek, Z. Knésl, Glass fibre reinforced cement based composite: fatigue and fracture parameters, Applied and Computational Mechanics 3 (2009) 363–374.
DOI: 10.4028/www.scientific.net/kem.417-418.129
Google Scholar
[5]
S. Seitl, V. Bílek, Z. Keršner, J. Veselý, Cement based composites for thin building elements: Fracture and fatigue parameters, Procedia Engineering 2 (2010) 911–916.
DOI: 10.1016/j.proeng.2010.03.098
Google Scholar
[6]
S. Seitl, Z. Knésl, H. Šimonová, Z. Keršner, Fatigue crack growth in cement based composites: Experimental aspects, Life-Cycle and Sustainability of Civil Infrastructure Systems, Proceedings of the 3rd International Symposium on Life-Cycle Civil Engineering Systéme, eds. Strauss, Frangopol, Bergmeister, Tailor & Francis Group, London, IALCCE (2012).
DOI: 10.1201/b12995
Google Scholar
[7]
A. Strauss, T. Zimmermann, D. Lehký, D. Novák, Z. Keršner, Stochastic fracture-mechanical parameters for the performance based design of concrete structures, Structural Concrete (2014), (in press).
DOI: 10.1002/suco.201300077
Google Scholar
[8]
S. Korte, V. Boel, W. De Corte, G. De Schutter, Static and fatigue fracture mechanics properties of self-compacting concrete using three-point bending tests and wedge-splitting tests, Construction & Building Materials (2014), (in press).
DOI: 10.1016/j.conbuildmat.2014.01.090
Google Scholar
[9]
N.P. O'Dowd, C.F. Shih, Two-parameter fracture mechanics: theory and Applications, Fracture Mechanics 24 (1994) 21–47.
Google Scholar
[10]
S. Seitl, V. Veselý, L. Řoutil, Two-parameter fracture mechanical analysis of a near-crack-tip stress field in wedge splitting test specimens, Computers & Structures 89 (2011) 1852–1858.
DOI: 10.1016/j.compstruc.2011.05.020
Google Scholar
[11]
M. L Williams, On the stress distribution at the base of stationary crack, ASME Journal of Applied Mechanics 24 (1957) 109–114.
Google Scholar
[12]
P.S. Leevers, J.C. Radon, Inherent stress biaxiality in various fracture specimen geometries, International Journal of Fracture 19 (1983) 311–325.
DOI: 10.1007/bf00012486
Google Scholar
[13]
E. Brühwiler, F.H. Wittmann, The wedge splitting test, a new method of performing stable fracture mechanics test, Engineering Fracture Mechanics 35 (1990).
DOI: 10.1016/0013-7944(90)90189-n
Google Scholar
[14]
G.V. Guinea, M. Elices, J. Planas, Stress intensity factors for wedge-splitting geometry, International Journal of Fracture 81 (1996) 113–124.
DOI: 10.1007/bf00033177
Google Scholar
[15]
V. Veselý, L. Řoutil, S. Seitl, Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites Part I: Cohesive Crack Modelling, Key Engineering Materials 452–453 (2011) 77–80.
DOI: 10.4028/www.scientific.net/kem.452-453.77
Google Scholar
[16]
S. Seitl, J. Klusák, V. Veselý, L. Řoutil, Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites Part II: Crack and Notch Fracture Mechanics Approaches, Key Engineering Materials 452–453 (2011).
DOI: 10.4028/www.scientific.net/kem.452-453.81
Google Scholar
[17]
B. Yang, K. Ravi-Chandar, Evaluation of elastic T-stress by the stress difference method. Engineering Fracture Mechanics, 64, (1999) 589–605.
DOI: 10.1016/s0013-7944(99)00082-x
Google Scholar
[18]
L. J Gray, A. -V Phan, Glaucio H Paulino, T Kaplan Improved quarter-point crack tip element Original Research Artikle Engineering Fracture Mechanics 70 (2003) 269-283.
DOI: 10.1016/s0013-7944(02)00027-9
Google Scholar
[19]
S. Seitl, S. Korte, W. De Corte, V. Boel, J. Sobek, V. Veselý, Selecting a suitable specimen shape with low constraint value for determination of fracture parameters of cementitious composites, Key Engineering Materials 577–578 (2014) 481–484.
DOI: 10.4028/www.scientific.net/kem.577-578.481
Google Scholar