Amorphization of Fe-Ni Based Alloys by Laser Cladding and Remelting

Article Preview

Abstract:

The Fe32Ni32Si16B18Nb2, Fe31Ni31Si18B18Nb2 and Fe30Ni30Si20B18Nb2, (at. %) alloys are synthesized using low purity of raw materials by high power CO2 laser cladding with synchronous powder feeding. X-ray diffraction results show that the coating has an amorphous structure with some crystalline phases on it. The microstructure of the coatings changes with different amounts of Si. It can be observed that black nanocrystalline grains embedded in the amorphous phase in the TEM image. The coating of Fe31Ni31Si18B18Nb2 alloy was annealed at different temperature for 30 minutes and the microstructure were investigated. The highest Vickers Hardness had exceeded 1300 in the coatings. The amount of Si is a critical factor for fabricating a Fe-Ni based amorphous composite coating.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

1420-1424

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Perron, Constantes Physico-Chimiques, Techniques de l'Ingénieur, vol. K4, Imprimerie Strasbourgeoise, Schiltigheim, France, (1994).

Google Scholar

[2] F.E. Luborsky, Amorphous Metallic Alloys, Butterworths, London, (1983).

Google Scholar

[3] J. Dutta-Majumdar, I. Manna, Mater. Sci. Eng., A 268 (1999) 227.

Google Scholar

[4] J. Dutta Majumdar, B.L. Mordike, I. Manna, Wear 242 (2000) 18.

Google Scholar

[5] J. Dutta-Majumdar, A. Weisheit, B.L. Mordike, I. Manna, Mater. Sci. Eng., A 266 (1999) 123.

Google Scholar

[6] J. Dutta Majumdar, I. Manna, Mater. Sci. Eng., A 267 (1999) 50.

Google Scholar

[7] D. Carvalho, S. Cardoso, R. Vilar, Scripta Mater. 37 (1997) 523.

Google Scholar

[8] H. Yoshioka, K. Asami, A. Kawashima, K. Hashimoto, Corros. Sci. 27 (1987) 981.

Google Scholar

[9] X. Wu, Y. Hong , Surface and Coatings Technology 141(2001)141.

Google Scholar

[10] Y. Hu, M.X. Pan, L. Liu, Y.H. Zhao, D.Q. Zhao, W.H. Wang, Mater. Lett. 57 (2003) 2698.

Google Scholar

[11] T. Masumoto, Sci. Rep. Res. Inst. Tohoku Univ. A 29, (1981)265.

Google Scholar

[12] P. Andonov, P. Rougier, and R. Krishnan, Mater. Sci. Eng., A 226, (1997) 56.

Google Scholar

[13] M. Knobel, J. C. Cezar, H. C. N. Tolentino, J. Magn. Magn. Mater., 78, (2001) 233.

Google Scholar

[14] A. Inoue and B. L. Shen, Mater. Trans., JIM 43, (2002) 766.

Google Scholar

[15] C. T. Chang, B. L. Shen, and A. Inoue, Appl. Phys. Lett. 88, (2006)011901.

Google Scholar

[16] A. Inoue, B. L. Shen, and C. T. Chang, Acta Mater. 52, (2004) 4093.

Google Scholar