Structural Dynamic Topology Optimization and Sensitivity Analysis Based on RKPM

Article Preview

Abstract:

A numerical method for structural dynamic topology optimization and sensitivity analysis is presented by using RKPM. In this paper, the relative density of node and maximum fundamental eigenfrequency is respectively chosen as design variable and the objective function, and then the mathematical model for dynamic topology optimization based on RKPM is built. During the process of modeling, some effective measures are taken to dispose the multi-eigenvalues and localized modes. Subsequently, the sensitivity analysis equation is proposed by using Direct Differentiation Method. Finally, by integrating the above sensitivity analysis with Optimality Criteria method, the dynamic topology optimization of an example is performed successfully. Numerical example shows that both checkboards and localized eigenmodes do not occur during topology optimization, and it indicates the proposed method is valid.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

3646-3650

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rietz: Struct. Multidisc. Optim. Vol. 21(2001), p.159.

Google Scholar

[2] K. Matsui, K. Terada: Int. J. Numer. Meth. Engng Vol. 59(2004), p. (1925).

Google Scholar

[3] G. Allaire, F. Jouve and H. Maillot: Struct. Multidisc. Optim. Vol. 28(2004), p.87.

Google Scholar

[4] Y. M. Wang, X. M. Wang and D. M. Guo: Comput. Methods Appl. Mech. Engrg. Vol. 192(2003), p.227.

Google Scholar

[5] J. Mackerle: Finite Elem. Anal. Des. Vol. 39(2003), p.243.

Google Scholar

[6] O. Sigmund, J. Petersson: Struct. Optim. Vol. 16(1998), p.68.

Google Scholar

[7] R.B. Haber, C.S. Jog and M.P. Bendsoe: Struct. Optim. Vol. 11(1996), p.1.

Google Scholar

[8] O. Sigmund: Struct. Multidisc. Optim. Vol. 21(2001), p.120.

Google Scholar

[9] W. K. Liu, S. Jun and Y. F. Zhang: Int. J. Numer. Methods Fluids Vol. 20(1995), p.1081.

Google Scholar

[10] J. P. Zhang, S. G. Gong and Y. Q. Huang: Struct. Multidisc. Optim. Vol. 36(2008), p.307.

Google Scholar

[11] S. Cho, J. Kwak: Comput. Methods Appl. Mech. Engrg. Vol. 195(2006), p.5909.

Google Scholar

[12] J. X. Zhou, W. Zou: Struct. Multidisc. Optim. Vol. 36(2008), p.347.

Google Scholar

[13] B. Y. Liao, X. M. Zhou and Z. H. Yin: Modern mechanical dynamics and its engineering application-modeling, analysis, simulation, control, modification and optimization (China Machine Press, Beijing 2003). (In Chinese).

Google Scholar

[14] X. Y. Yang, Y. M. Xie and G. P. Steven: J. Struct. Engng. Vol. 12(1999), p.1432.

Google Scholar

[15] J. H. Rong, Y. M. Xie and X. Y. Yang: J. Sound. Vib. Vol. 234(2000), p.177.

Google Scholar

[16] J. H. Zhu, W. H. Zhang: Struct. Multidisc. Optim. Vol. 31(2006), p.462.

Google Scholar

[17] J. S. Jensen: Int. J. Numer. Meth. Engng. Vol. 72(2007), p.1605.

Google Scholar

[18] A. E. Sabbagh, W. Akl and A. Baz: Finite Elem. Anal. Des. Vol. 44(2008), p.439.

Google Scholar