Influence of Plastic Deformation Degree on Microstructure and Mechanical Properties of the Magnesium Alloy ZK60 after T5 Treatment

Article Preview

Abstract:

The effects of extrusion ratios (15, 30, 45and 60) on microstructure and mechanical properties of ZK60 magnesium alloy after T5 treatment were investigated. The results show that mechanical properties increase with the increase of extrusion ratios from 15 to 45.However, when the extrusion ratio is increase to 60, each mechanical property is decreased severly.By comparison,in the extrusion ratio of 30, ZK60 magnesium alloy after T5 treatment has excellent comprehensive mechanical properties.Different degrees of dynamic recrystallization appeared in the extrusion process and induced precipitation of second phase.The precipitation of the second phase is beneficial to the grain refinement and meanwhile to the promotion of the strength.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

565-569

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Schumann, H. Friedrich: Mater. Sci. Forum Vol. 419-422 (2003),P. 51-56.

Google Scholar

[2] G.S. Cole: Mater. Sci. Forum Vol. 419-422 (2003),P. 43-50.

Google Scholar

[3] S. Lee Y.H. Chen, J.Y. Wang: J. Mater. Process. Technol. Vol. 124 (2002),P. 19-24.

Google Scholar

[4] H. Takuda, T. Enami, K. Kubota: J. Mater. Proc. Technol. 101 (2000),P. 281-286.

Google Scholar

[5] E. Doege, K. Droder: J. Mater. Proc. Technol. Vol. 115 (2001),P. 14-19.

Google Scholar

[6] N. Ogawa, M. Shiomi, K. Osakada: Int. J. Mach. Tools Manuf. Vol. 42 (2002),P. 607-614.

Google Scholar

[7] G. Kurz: Magnesium Technology, 2004[C], TMS, pp.67-71.

Google Scholar

[8] H. Somekawa, T. Mukai: Scripta Mater. 53 (2005) 1059-1064.

Google Scholar

[9] H. Somekawa, T. Mukai: Mater. Sci. Forum 503-504 (2006) 155-160.

Google Scholar

[10] H. Somekawa, A. Singh, T. Mukai, Philos: Mag. Lett. 86 (2006) 195-204.

Google Scholar

[11] J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama,K. Higashi: Acta Mater. 51 (2003) 2055-(2065).

Google Scholar

[12] J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama: Mater. Trans. 44 (2003) 445-451.

Google Scholar

[13] Zhou D W, Zhuang H L , Liu J S , et al: J Henan Univ Sci-Technol Nat Sci , Vol. 25(2004),P. 14.

Google Scholar

[14] Cheng Renju, Pan Fusheng: Journal of University of Science and Technology Beijing, Vol. 30(2008),P. 1397-1401.

Google Scholar

[15] K. Kubota, M. Mabuchi, K. Higashi: J. Mater. Sci. 34 (1999),P. 2255-2262.

Google Scholar

[16] Yu kun, Li wenxian, Wang richu: The Chinese journal of nonferrous metals, Vol. 17 (2007), P. 188-192.

Google Scholar

[17] Luo A A: Int Mater Rev, Vol. 49 (2004), P. 13.

Google Scholar

[18] Zhang S J , Li W X , Yu K: Foundry, Vol. 50(2001),P. 373.

Google Scholar

[19] H.T. Zhou, Z.D. Zhang: Materials Science and Engineering A 445-446 (2007) 1-6.

Google Scholar

[20] Y. Chen, Q. Wang, J. Peng, C. Zhai,W. Ding: J. Mater. Process. Technol. Vol. 182 (2007), pp.281-285.

Google Scholar

[21] S. Ishihara, H. Shibata, K. Komano, T. Goshima, Z.Y. Nan: Key Eng. Mater. Vol. 353-358(2007), pp.291-294.

DOI: 10.4028/www.scientific.net/kem.353-358.291

Google Scholar