An Investigation on the Hydrogen Content in Al-12Si Alloy Melt

Article Preview

Abstract:

This present work investigate the hydrogen content in Al-12Si alloy at different holding temperatures of 993K, 1023K, and 1053K and under different ambient relative humidity 30%RH, 50%RH, 80%RH. The relationship of the hydrogen content with atmosphere relative humidity and the reaction time was investigated. A HYSCAN II analyzer was used to evaluate the hydrogen content in aluminum melts. The experimental results show that the hydrogen content increased with the holding temperature and the relative humidity. At the temperature 1053K, the hydrogen content has an inverse change. The hydrogen content is more depend on the liquid structure than physical mass transfer and chemical reaction because of the sudden change in liquid microstructure. A group of kinetic regression equations of the hydrogen absorption in Al-12Si melts was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 97-101)

Pages:

785-788

Citation:

Online since:

March 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus and W. S. Miller: Mater. Sci. Eng. A Vol. 280 (2000), p.102.

Google Scholar

[2] E. A. Starke and J. T. Staley: Prog. Aerosp. Sci. Vol. 32 (1996), p.131.

Google Scholar

[3] G. K. Sigworth, S. Shivkumar and D. Apelian: AFS Trans. Vol. 97 (1989), p.811.

Google Scholar

[4] J. Weigel and E. Fromm: Metall. Mater. Trans. B Vol. 21 (1990), p.855.

Google Scholar

[5] A. Mitrasinovic, F. C. Robles Hernandez, M. Djurdjevic and J. H. Sokolowski: Mater. Sci. Eng. A Vol. 428 (2006), p.41.

Google Scholar

[6] K. D. Li and E. Chang: Acta Mater. Vol. 52 (2004), p.219.

Google Scholar

[7] P. N. Anyalebechi: Scr. Mater. Vol. 34 (1996), p.513.

Google Scholar

[8] H. Liu, M. Bouchard and L. Zhang: J. Mater. Sci. Vol. 30 (1995), p.4309.

Google Scholar

[9] A. M. Samuel and F. H. Samuel: Metall. Trans. A Vol. 24 (1993), p.1857.

Google Scholar

[10] M. H. Mulazimoglu, N. Handiak and J. E. Gruzleski: AFS Trans. Vol. 97 (1989), p.225.

Google Scholar

[11] S. A. Levy: AFS Trans. Vol. 93(1985), p.889.

Google Scholar

[12] P. Anyalebechi: Techniques for determination of the hydrogen content in aluminum and its alloys (Light Metals, Warrendale 1991).

Google Scholar

[13] Á Szőkefalvi-Nagy, E. Fromm and L. Stojanova: Metall. Mater. Trans. B Vol. 29 (1998), p.421.

Google Scholar

[14] R. Lin and M. Hoch: Metall. Mater. Trans. A Vol. 20(1989), p.1785.

Google Scholar

[15] G. Y. Jiang, Y. Liu, Y. X. Li, Y. Q. Su and J. J. Guo: Acta Metall. Sin. Vol. 44 (2008), p.129 (in Chinese).

Google Scholar

[16] P. J. Li, D. B. Zeng, J. Jia and Q. C. Li: Trans. Nonferrous Met. Soc. China Vol. 10 (2000), p.261 (in Chinese).

Google Scholar

[17] Q. G. Meng, X. F. Bian, W. M. Wang and J. Q. Chen: Acta Metall. Sin. Vol. 37 (2001), p.258 (in Chinese).

Google Scholar

[18] Z. H. Zhang, X. F. Bian, J. Y. Qin, W. M. Wang and X. F. Liu: Acta Metall. Sin. Vol. 36 (2000), p.33 (in Chinese).

Google Scholar