[1]
C.J. Wang, J.W. Lee, T.H. Twu, Corrosion Behavior of Low Carbon Steel, SUS310 and Fe-Mn-Al Alloy with Hot-Dipped Aluminum Coatings in NaCl-induced Hot Corrosion, J. Surface and Coatings Technology. 163 (2003) 37-43.
DOI: 10.1016/s0257-8972(02)00588-1
Google Scholar
[2]
C.C. Tsaur, J.C. Rock, Y.Y. Chang, The Effect of NaCl Deposit and Thermal Cycle on an Aluminide Layer Coated on 310 Stainless Steel, J. Materials Chemistry and Physics. 91 (2005) 330-337.
DOI: 10.1016/j.matchemphys.2004.11.035
Google Scholar
[3]
H.H. Liu, W.J. Cheng, C.J. Wang, The Mechanism of Oxide Whisker Growth and Hot Corrosion of Hot-Dipped Al–Si Coated 430 Stainless Steels in Air–NaCl(g) Atmosphere, J. Applied Surface Science. 257 (2011) 10645– 10652.
DOI: 10.1016/j.apsusc.2011.07.066
Google Scholar
[4]
W. Deqing, Phase Evolution of Aluminized Steel by Oxidation Treatment, J. Applied Surface Science. 254 (2008) 3026-3032.
DOI: 10.1016/j.apsusc.2007.10.059
Google Scholar
[5]
C.J. Wang, S.M. Chen, The High Temperature Oxidation Behavior of Hot-Dipping Al-Si Coating on Low Carbon Steel, J. Surface and Coatings Technology. 200 (2006) 6601-6605.
DOI: 10.1016/j.surfcoat.2005.11.031
Google Scholar
[6]
W.J. Cheng, C. J Wang, Growth of Intermetallic Layer in the Aluminide Mild Steel during Hot-Dipping, J. Surface and Coatings Technology. 204 (2009) 824-828.
DOI: 10.1016/j.surfcoat.2009.09.061
Google Scholar
[7]
G. Palombarini, A. Casagrande, M. Carbucicchio, R. Ciprian, Protection Against Corrosion of Iron Alloys by Aluminized Coatings Produced Using Two Different Processes, J. Hyperfine Interact. 187 (2008) 125-130.
DOI: 10.1007/s10751-008-9873-8
Google Scholar
[8]
W.J. Cheng, C.J. Wang, Effect of Silicon on the Formation of Intermetallic Phases in Aluminide Coating on Mild Steel, J. Intermetallics (2011) 1-6.
DOI: 10.1016/j.intermet.2011.05.013
Google Scholar
[9]
W. Deqing, S. Ziyuan, Z. Longjiang, A Liquid Aluminum Corrosion Resistance Surface on Steel Substrate, J. Applied Surface Science. 214 (2003) 304-311.
DOI: 10.1016/s0169-4332(03)00505-1
Google Scholar
[10]
W.J. Cheng, C.J. Wang, EBSD Study of Crystallographic Identification of Fe-Al-Si Intermetallic Phases in Al-Si Coating on Cr-Mo Steel, J. Applied Surface Science. 257 (2011) 4637-4642.
DOI: 10.1016/j.apsusc.2010.12.107
Google Scholar
[11]
W.J. Cheng, C. J Wang, Microstructural evolution of intermetallic layer in hot-dipped aluminide mild steel with silicon addition, J. Surface and Coatings Technology. 205 (2011) 4726-4731.
DOI: 10.1016/j.surfcoat.2011.04.061
Google Scholar
[12]
H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, J. Hejazi, Microstructural Analysis of Interfacial Reaction Between Molten Aluminum and Solid Iron, J. Materials Processing Technology. 124 (2002) 345-352.
DOI: 10.1016/s0924-0136(02)00225-x
Google Scholar
[13]
W.J. Cheng, C.J. Wang, Study of Microstructure and Phase Evolution of Hot-Dipped Aluminide Mild Steel during High-Temperature Diffusion Using Electron Backscatter Diffraction, J. Applied Surface Science. 257 (2011) 4663-4668.
DOI: 10.1016/j.apsusc.2010.12.118
Google Scholar
[14]
G.H. Awan, F.U. Hasan, The Morphology of Coating/Substrate Interface in Hot-Dip-Aluminized Steels, J. Materials Science and Engineering. A 472 (2008) 157-165.
DOI: 10.1016/j.msea.2007.03.013
Google Scholar
[15]
B. Abdolahi, H.R. Shahverdi, M.J. Torkamany, M. Emami, Improvement of the Corrosion Behavior of Low Carbon Steel by Laser Surface Alloying, J. Applied Surface Science. 257 (2011) 9921-9924.
DOI: 10.1016/j.apsusc.2011.06.108
Google Scholar
[16]
P.F. Tortorelli, J.H. DeVan, Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments, J. Materials Science and Engineering. A 153 (1992) 573-577.
DOI: 10.1016/0921-5093(92)90253-w
Google Scholar