[1]
Mur G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans EMC, 1981; 23(4): 377-382.
DOI: 10.1109/temc.1981.303970
Google Scholar
[2]
Liao Z P. Transmitting boundary and radiation conditions at infinity. Science in China (Series E), 2001; 44(2): 67-76.
Google Scholar
[3]
Higdon R L. Absorbing boundary condition for elastic waves. Geophysics, 1991; 56(2): 231-241.
DOI: 10.1190/1.1443035
Google Scholar
[4]
Cerjan C. Kosloff D. Kosloff R and Reshef M. A nonreflecting boundary condition for discrete acoustic and elastic wave equation. Geophysics, 1985; 50(4): 705-708.
DOI: 10.1190/1.1441945
Google Scholar
[5]
Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys, 1994; 114: 185-200.
DOI: 10.1006/jcph.1994.1159
Google Scholar
[6]
Hastings F. Schneider J B and Broschat S L. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. Journal of the Acoustic Society of America, 1996; 100(5): 3061-3069.
DOI: 10.1121/1.417118
Google Scholar
[7]
Collino F . Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics, 2001; 66(1): 294-307.
DOI: 10.1190/1.1444908
Google Scholar
[8]
Zeng Y Q. He J Q and Liu Q H. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics, 2001; 66(4): 1258-1266.
DOI: 10.1190/1.1487073
Google Scholar
[9]
Komatitsch D and Tromp J. A perfectly matched layer absorbing boundary condition for the second - order seismic wave equation. Geophysical Journal International, 2003; 154: 146-150.
DOI: 10.1046/j.1365-246x.2003.01950.x
Google Scholar
[10]
ZHU Z L,MA Z T. Two order elastic wave equation simulation PML absorbing boundary condition in anisotropic medium. Journal of Geodesy and Geodynamics, 2007; 27(5): 50-53.
Google Scholar
[11]
XING L. Absorbing boundary conditions for the numerical simulation of acoustic waves. Journal of Shanghai Second Polytechnic University, 2006; 23(4): 16-22.
Google Scholar
[12]
Appelo D and Kreiss G. A new absorbing layer for elastic waves. Journal of Computational Physics. 2006; 215: 642-660.
DOI: 10.1016/j.jcp.2005.11.006
Google Scholar