[1]
X. F. Chen, J. M. Li, H. Cheng: Research and application of condition monitoring and fault diagnosis technology in wind turbines. Journal of Mechanical Engineering, vol. 47, pp.45-52, (2011).
DOI: 10.3901/jme.2011.09.045
Google Scholar
[2]
Z. N. Han, Z. J. Wang: The Application of Cyclic Autocorrelation Function Vibration Test of Wind Power Growth Gearbox. Machinery Design & Manufacture, vol. 10, pp.71-73, (2012).
Google Scholar
[3]
Hameed Z, Hong Y S, Cho Y M: Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable Energy Reviews, vol. 13, pp.1-39, (2009).
DOI: 10.1016/j.rser.2007.05.008
Google Scholar
[4]
Z. Q. Sun, C. Z. Chen, Y. L. Gu: Application of Multi-Fractal Method to Fault Diagnosis of Wind Turbines Main Bearing. Machinery Design & Manufacture, vol. 1, pp.61-65, (2012).
Google Scholar
[5]
X. Y. Zhang, S. He, X. B. Zhang: Study of Fault Diagnosis Wind Turbine Generator System. Journal of Xinjiang University, vol. 2, pp.140-144, (2009).
Google Scholar
[6]
X. J. Jiang, E. L. Liu: Fault Diagnosis Based on Wavelet Neural Network for Gearbox in Wind Generator. Process Automation Instrumentation, vol. 4, pp.9-12, (2012).
Google Scholar
[7]
Y. L. Liu, X. J. Tao, J. Li: Feature extraction of rolling bearing for wind generator based on HHT. Power System Protection and Control, vol. 20, pp.79-88, (2012).
Google Scholar
[8]
H. Z. Feng, W. Liang, L. b. Zhang: State Monitoring and Early Fault Diagnosis of Rolling Bearing based on Wavelet Energy Entropy and LS-SVM. Journal of Computers, vol. 8, pp.2150-2155, (2013).
DOI: 10.4304/jcp.8.8.2150-2155
Google Scholar