[1]
Fukunaga K, and Hostetler LD, The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Trans. Information Theory, vol. 21, pp.32-40, (1975).
DOI: 10.1109/tit.1975.1055330
Google Scholar
[2]
Cheng Y, Mean shift, mode seeking, and clustering, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp.790-799, (1995).
DOI: 10.1109/34.400568
Google Scholar
[3]
Comaniciu D, and Ramesh V, Mean shift and optimal prediction for efficient object tracking, " In: Mojsilovic A, Hu J, eds. Proc. of the IEEE Int, l Conf. on Image Processing(ICIP), pp.70-73, (2000).
DOI: 10.1109/icip.2000.899297
Google Scholar
[4]
Comaniciu D, Ramesh V, and Meer P, Real-Time tracking of non-rigid objects using mean shift, In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.142-149, (2000).
DOI: 10.1109/cvpr.2000.854761
Google Scholar
[5]
Collins RT, Mean shift blob tracking through scale space, In: Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR), pp.18-20, (2003).
DOI: 10.1109/cvpr.2003.1211475
Google Scholar
[6]
Shan C, Wei Y, and Tan T et al, Real Time Hand Tracking by Combining Particle Filtering and Mean Shift, In: Proc. of the 6th IEEE International Conf. on Automatic Face and Gesture Recognition, 17-19, May, pp.669-674, (2004).
DOI: 10.1109/afgr.2004.1301611
Google Scholar
[7]
Maggio E, and Cavallaro A, Hybrid Particle Filter and Mean Shift tracker with adaptive transition model, In: Proc. of IEEE Signal Proc. Society Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, USA, March pp.19-23, (2005).
DOI: 10.1109/icassp.2005.1415381
Google Scholar
[8]
Comaniciu D, Image segmentation using clustering with saddle point detection, " In: Proc. of the IEEE Int, l Conf. on Image Processing (ICIP), pp.297-300, (2002).
DOI: 10.1109/icip.2002.1038964
Google Scholar
[9]
Wang J, Thiesson B, and Y. Xu et al, Image and Video Segmentation by Anisotropic Kernel Mean Shift, In: Proc. European Conf. on Computer Vision (ECCV), (2004).
DOI: 10.1007/978-3-540-24671-8_19
Google Scholar
[10]
Comaniciu D, Ramesh V, and A. D. Bue, Multivariate saddle point detection for statistical clustering, In: Proc. of the European Conf. Computer Vision (ECCV). Pp. 561-576, (2002).
DOI: 10.1007/3-540-47977-5_37
Google Scholar
[11]
Georgescu B, Shimshoni I, and Meer P, Mean Shift Based Clustering in High Dimensions: A Texture Classification Example, In: Proc. ICCV, Oct. pp.456-463, (2003).
DOI: 10.1109/iccv.2003.1238382
Google Scholar
[12]
Comaniciu D, and Meer P, Mean shift analysis and applications, " In: Proc. of the IEEE Int, l Conf. on Computer Vision (ICCV), pp.1197-1203, (1999).
Google Scholar
[13]
Comaniciu D, Nonparametric information fusion for motion estimation, In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.59-66, (2003).
DOI: 10.1109/cvpr.2003.1211338
Google Scholar
[14]
Cormaniriu D,Ramesh V.Meer P.Kernel—based object tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,3003.25(5);564—577.
Google Scholar
[15]
H. M. Qian,Y. B. Mao and Z. Q. Wang,Mean Shift Tracking with Self-updating Tracking Window,, Journal of Image and Graphics,Vol. 12,pp.245-249,Feb (2007).
Google Scholar