[1]
A. Hyvärinen, J. Karhunen, E. Oja: Independent Component Analysis. Wiley, (2001).
Google Scholar
[2]
A. Cichocki, S. Amari: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, (2003).
Google Scholar
[3]
Z. Wei, L. Ju, S. Jiande, B. Shuzhong, A New Two-Stage Approach to Underdetermined Blind Source Separation using Sparse Representation, In IEEE International Conference on Acoustics, Speech and Signal Processing, April 15-20, (2007).
DOI: 10.1109/icassp.2007.366839
Google Scholar
[4]
Y. Q. Li, A. Cichocki, and S. Amari: Analysis of sparse representation and blind source separation. Neural Computation, Vol. 16-6 (2004), p.1193.
DOI: 10.1162/089976604773717586
Google Scholar
[5]
A. Cichocki, R. Zdunek, and S. Amari: Nonnegative matrix and tensor factorization. IEEE Signal Processing Magazine, Vol. 25(2008), p.142.
DOI: 10.1109/msp.2008.4408452
Google Scholar
[6]
C. Ding, T. Li, and M. Jordan: Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32-1(2010), p.45.
DOI: 10.1109/tpami.2008.277
Google Scholar
[7]
A. Cichocki, A. H. Phan, C. Caiafa, Flexible HALS algorithms for sparse non-negative matrix/tensor factorization, In IEEE Workshop on Machine Learning for Signal Processing, Oct. 16-19, (2008).
DOI: 10.1109/mlsp.2008.4685458
Google Scholar
[8]
P. D. O'Grady, S. T. Rickard. 2009, Recovery of Non-Negative Signals from Compressively Sampled Observations Via Non-Negative Quadratic Programming, Workshop: Signal Processing with Adaptive Sparse Structured Representations, April 06-09, (2009).
Google Scholar
[9]
Information on http: /www. irisa. fr /metiss/bss eval/metiss/bss eval.
Google Scholar