Photocatalytic Decomposition of Rhodamine-B Using Scandium and Silver-Modified TiO2 Powders

Article Preview

Abstract:

Semiconductor-mediated photocatalytic oxidation is an interesting method for water decontamination and a specially modified TiO2 is said to be a promising material. This study verified that the synthesis of 1wt%Ag modified-Sc0.01Ti0.99O1.995 powder samples prepared by Polymeric Precursor Method is capable of forming a mixture of anatase-rutile phase with high photocatalytic performance. This kind of material is found to have a lower bandgap compared to the TiO2-anatase commercial powders, which can be associated to an innovative hybrid modification. The simultaneous insertion of scandium in order to generate a p-type semiconductor and a metallic silver nanophase acting as an electron trapper demonstrated being capable of enhancing the degradation of rhodamine B compared to the commercial TiO2. In spite of the different thermal treatments or phase amounts, the hybrid modified powder samples showed higher photocatalytic activity than the commercial ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-218

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Cavalheiro, J.C. Bruno, M.J. Saeki, J.P.S. Valente, A.O. Florentino, Photocatalytic Decomposition of Diclofenac Potassium Using Silver-Modified TiO2 Thin Films, Thin Solid Films 516 (2008) 6240-6244.

DOI: 10.1016/j.tsf.2007.11.117

Google Scholar

[2] A.A. Cavalheiro, J.C. Bruno, M.J. Saeki, J.P.S. Valente, A.O. Florentino, Effect of Scandium on the Strutural and Photocatalytic Properties of Titanium Dioxide Thin Films, J. Mater. Sci. 43 (2008) 602-608.

DOI: 10.1007/s10853-007-1743-2

Google Scholar

[3] A.R. Malagutti, H.A.J.L. Mourão, J.R. Garbin, C. Ribeiro, Deposition of TiO2 and Ag: TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes, Appl. Catal. B: Environ. 90 (2009) 205-212.

DOI: 10.1016/j.apcatb.2009.03.014

Google Scholar

[4] M.D. Earle, The Electrical Conductivity of Titanium Dioxide, Phys. Rev. 61 (1942) 56-62.

Google Scholar

[5] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rept. 63 (2008) 515-582.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[6] B. Choudhury, M. Dey, A. Choudhury, Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles, Int. Nano Lett. 3 (2013) 25.

DOI: 10.1186/2228-5326-3-25

Google Scholar

[7] Z. Cao, L. Sun, X. Cao, Y. He, Effects of Metal Ion Dopants on Absorption Spectra and Photoreactivity of TiO2 Nanoparticles, Adv. Mater. Res. 233-235 (2011) 2722.

Google Scholar

[8] L. Perazolli, L. Nuñez, M.R.A. da Silva, G.F. Pegler, A.G.C. Costalonga, R. Gimenes, M.M. Kondo, M.A.Z. Bertochi, TiO2/CuO Films Obtained by Citrate Precursor Method for Photocatalytic Application, Mater. Sci. Appl. 2 (2011) 564-571.

DOI: 10.4236/msa.2011.26075

Google Scholar

[9] X. Li, T. Fan, H. Zhou, S-K. Chow, W. Zhang, D. Zhang, Q. Guo, H. Ogawa, Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates, Adv. Funct. Mater. 19 (2009) 45-56.

DOI: 10.1002/adfm.200800519

Google Scholar

[10] S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goates, B.F. Woodfield, Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability, Am. Mineral. 94 (2009) 236-243.

DOI: 10.2138/am.2009.3050

Google Scholar