[1]
F. Navid, A. Muhammad, S. Azhar. Bayesian estimation and prediction of burr type XI distribution under singly and doubly censored samples. International Journal of Hybrid Information Technology, Vol. 7 (2014), pp.331-345.
DOI: 10.14257/ijhit.2014.7.2.29
Google Scholar
[2]
J. W. Wu, C. W. Hong, W. C. Lee. Computational procedure of lifetime performance index of products for the Burr XII distribution with upper record values. Applied Mathematics and Computation, Vol. 227 (2014), pp.701-716.
DOI: 10.1016/j.amc.2013.11.026
Google Scholar
[3]
Z. F. Jaheen. Bayesian approach to prediction with outliers from the Burr type model. Microelectron. Reliab. Vol. 35, No. 1 (1995), pp.45-47.
DOI: 10.1016/0026-2714(94)00056-t
Google Scholar
[4]
Z. F. Jaheen. Empirical Bayes estimation of the reliability and failure rate functions of the Burr type X failure rate model.J. Appl. Statist. Sci. Vol. 3, No. 4 (1996), pp.281-288.
Google Scholar
[5]
K. E. Ahmad, M. E. Fakhry, and Z. F. Jaheen. Empirical Bayes estimation of P(Y<X) and characterizations of Burr-type X model, Journal of Statistical Planning and Inference, Vol. 64 (1997), pp.297-308.
DOI: 10.1016/s0378-3758(97)00038-4
Google Scholar
[6]
M. I. Raqab, and D. Kundu. Comparison of different estimators of P(Y<X) for a scaled Burr type X distribution, Communications in Statistics-Simulation and Computation, Vol. 34 (2005), pp.465-483.
DOI: 10.1081/sac-200055741
Google Scholar
[7]
C. Kim, and Y. Chung. Bayesian estimation of P(Y<X) from Burr-type X model containing spurious observations, Statistical Papers, Vol. 47 (2006), pp.643-651.
DOI: 10.1007/s00362-006-0310-2
Google Scholar
[8]
H. P. Ren, and Y. Q. Song. Minimax estimation of parameter in a family of distributions under two different loss functions. Ludong University Journal(Natural Science Editions), Vol. 25, (2009), pp.201-205.
Google Scholar
[9]
M. Mahdi, A. M. Vali, A, Jafar. Bayes estimation based on joint progressive type II censored data under LINEX loss function. Communications in Statistics: Simulation and Computation, Vol. 42, (2013), pp.1865-1886.
DOI: 10.1080/03610918.2012.683921
Google Scholar
[10]
A. Sajid, A. M. Kazmi, S. M. Ali. A study of the effect of the loss function on Bayes estimate, posterior risk and hazard function for Lindley distribution. Applied Mathematical Modelling, V. 37 (2013), pp.6068-6078.
DOI: 10.1016/j.apm.2012.12.008
Google Scholar
[11]
A. Zellner. Bayesian estimation and prediction using asymmetric loss functions. J. Amer. Statist. Assoc., Vol. 81 (1986), pp.446-451.
Google Scholar
[12]
N. Nematollahi, and F. Motamed-Shariati. Estimation of the scale parameter of the selected gamma population under the entropy loss function. Communications in Statistics-Theory and Methods, Vol. 38 (2009), pp.208-221.
DOI: 10.1080/03610920802187422
Google Scholar