Data Processing with Computation in Bayes Reliability Analysis for Burr Type X Distribution under Different Loss Functions

Article Preview

Abstract:

This paper studies the estimation of the parameter of Burr Type X distribution. Maximum likelihood estimator is first derived, and then the Bayes and Empirical Bayes estimators of the unknown parameter are obtained under three loss functions, which are squared error loss, LINEX loss and entropy loss functions. The prior distribution of parmeter used in this paper is Gamma distribution. Finally, a Monte Carlo simulation is given to illustrate the application of these estimators.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-208

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Navid, A. Muhammad, S. Azhar. Bayesian estimation and prediction of burr type XI distribution under singly and doubly censored samples. International Journal of Hybrid Information Technology, Vol. 7 (2014), pp.331-345.

DOI: 10.14257/ijhit.2014.7.2.29

Google Scholar

[2] J. W. Wu, C. W. Hong, W. C. Lee. Computational procedure of lifetime performance index of products for the Burr XII distribution with upper record values. Applied Mathematics and Computation, Vol. 227 (2014), pp.701-716.

DOI: 10.1016/j.amc.2013.11.026

Google Scholar

[3] Z. F. Jaheen. Bayesian approach to prediction with outliers from the Burr type model. Microelectron. Reliab. Vol. 35, No. 1 (1995), pp.45-47.

DOI: 10.1016/0026-2714(94)00056-t

Google Scholar

[4] Z. F. Jaheen. Empirical Bayes estimation of the reliability and failure rate functions of the Burr type X failure rate model.J. Appl. Statist. Sci. Vol. 3, No. 4 (1996), pp.281-288.

Google Scholar

[5] K. E. Ahmad, M. E. Fakhry, and Z. F. Jaheen. Empirical Bayes estimation of P(Y<X) and characterizations of Burr-type X model, Journal of Statistical Planning and Inference, Vol. 64 (1997), pp.297-308.

DOI: 10.1016/s0378-3758(97)00038-4

Google Scholar

[6] M. I. Raqab, and D. Kundu. Comparison of different estimators of P(Y<X) for a scaled Burr type X distribution, Communications in Statistics-Simulation and Computation, Vol. 34 (2005), pp.465-483.

DOI: 10.1081/sac-200055741

Google Scholar

[7] C. Kim, and Y. Chung. Bayesian estimation of P(Y<X) from Burr-type X model containing spurious observations, Statistical Papers, Vol. 47 (2006), pp.643-651.

DOI: 10.1007/s00362-006-0310-2

Google Scholar

[8] H. P. Ren, and Y. Q. Song. Minimax estimation of parameter in a family of distributions under two different loss functions. Ludong University Journal(Natural Science Editions), Vol. 25, (2009), pp.201-205.

Google Scholar

[9] M. Mahdi, A. M. Vali, A, Jafar. Bayes estimation based on joint progressive type II censored data under LINEX loss function. Communications in Statistics: Simulation and Computation, Vol. 42, (2013), pp.1865-1886.

DOI: 10.1080/03610918.2012.683921

Google Scholar

[10] A. Sajid, A. M. Kazmi, S. M. Ali. A study of the effect of the loss function on Bayes estimate, posterior risk and hazard function for Lindley distribution. Applied Mathematical Modelling, V. 37 (2013), pp.6068-6078.

DOI: 10.1016/j.apm.2012.12.008

Google Scholar

[11] A. Zellner. Bayesian estimation and prediction using asymmetric loss functions. J. Amer. Statist. Assoc., Vol. 81 (1986), pp.446-451.

Google Scholar

[12] N. Nematollahi, and F. Motamed-Shariati. Estimation of the scale parameter of the selected gamma population under the entropy loss function. Communications in Statistics-Theory and Methods, Vol. 38 (2009), pp.208-221.

DOI: 10.1080/03610920802187422

Google Scholar