Use of the Principal Component Analysis (PCA) to Reduce Data Complexity in Qualitative Research: An Electro-Electronics Case Study

Article Preview

Abstract:

The objective of this paper was to show that the Principal Component Analysis (PCA) quantitative technique is capable of grouping complex variables in correlation groups from qualitative research. Thus, the study proposes a set of indicators for evaluating the production area in electro-electronic transformation industries in the city of Curitiba and Metropolitan Region, under aspects of environmental, social and economic sustainability. By employing the technique, it was observed that the questions were well formulated and truly measured what was proposed by the researchers. However, the way the variables were grouped needs adjustments to facilitate application of the questionnaire and the tabulation and analysis of data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

526-529

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA ELÉTRICA E ELETRÔNICA - ABINEE. A indústria elétrica e eletrônica impulsionando a economia verde e a sustentabilidade. Associação Brasileira da Indústria Elétrica e Eletrônica – São Paulo: Abinee, (2012).

DOI: 10.11606/d.12.2013.tde-11102013-160714

Google Scholar

[2] A.L.C. PAIVA, R.B. TEIXEIRA, M. YAMAKI, G.R. O MENEZES, C.D. S LEITE, R. A TORRES: Análise de componentes principais em características de produção de aves de postura. R. Bras. Zootec., v. 39, n. 2, pp.285-288, (2010).

DOI: 10.1590/s1516-35982010000200009

Google Scholar

[3] E. M. Andrade, F. P. Araújo, F. Rosa, W. Disney, A. B Alves: Seleção dos indicadores da qualidade das águas superficiais pelo emprego da análise multivariada. Engenharia Agrícola, v. 27, pp.683-690, (2007).

DOI: 10.1590/s0100-69162007000400011

Google Scholar

[4] H. R. M. D. HORA, G. T. R. MONTEIRO, J. ARICA: Confiabilidade em Questionários para Qualidade: Um Estudo com o Coeficiente Alfa de Cronbach. Porto Alegre: Produto e Produção, , v. 11, n. 2, pp.85-103, (2010).

DOI: 10.22456/1983-8026.9321

Google Scholar

[5] J.F. BAKER, T.S. STEWART, C.R. LONG: Multiple regression and principal componentes analysis of puberty and growth in cattle. Journal of Animal Science, v. 66, n. 9, pp.2147-2158, (1988).

DOI: 10.2527/jas1988.6692147x

Google Scholar

[6] J.F. HAIR,; B. BLACK; B. BABIN, R.E. ANDERSON, R.L. TATHAM: Análise Multivariada de Dados. Edição Bookman Companhia Editora . Ltda, Porto Alegre (2009).

Google Scholar

[7] M. L. M. OKUMURA,  O. CANCIGLIERI JUNIOR: Sustainable and Inclusive Development Products Applied to Form Engineers in the Citizenship. Applied Mechanics and Materials, v. 518, pp.329-334, (2014).

DOI: 10.4028/www.scientific.net/amm.518.329

Google Scholar