Adaptive Self-Protection against Shock and Vibration

Abstract:

Article Preview

This contribution reviews the challenges in adaptive self-protection of structures. A proper semi-active control strategy can significantly increase structural ability to absorb impact-type loads and damp the resulting vibrations. Discussed systems constitute a new class of smart structures capable of a real-time identification of loads and vibration patterns, followed by a low-cost optimum absorption of the energy by structural adaptation. Given the always surging quest for safety, such systems have a great potential for practical applications (in landing gears, road barriers, space structures, etc.). Compared to passive systems, their better performance can be attributed to the paradigm of self-adaptivity, which is ubiquitous in nature, but still sparsely applied in structural engineering. Being in the early stages of development, their ultimate success depends on a concerted effort in facing a number of challenges. This contribution discusses some of the important problems, including these of a conceptual, technological, methodological and software engineering nature.

Info:

Periodical:

Edited by:

Pietro Vincenzi

Pages:

133-142

Citation:

Ł. Jankowski et al., "Adaptive Self-Protection against Shock and Vibration", Advances in Science and Technology, Vol. 101, pp. 133-142, 2017

Online since:

October 2016

Export:

Price:

$41.00

* - Corresponding Author

[1] H. Fang, K Solanki, M. F Horstemeyer. Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization. Int J Crashworthines 10 (2005) 161-172.

DOI: https://doi.org/10.1533/ijcr.2005.0335

[2] W.J. Witteman, R.F.C. Kriens. The necessity of an adaptive vehicle structure to optimize deceleration pulses for different crash velocities. 17th Int Technical Conf on the Enhanced Safety of Vehicles (ESV), 2001, paper no. 320.

[3] G. Mikułowski, Ł. Jankowski. Adaptive Landing Gear: optimum control strategy and potential for improvement, Shock Vib 16 (2009) 175-194.

DOI: https://doi.org/10.1155/2009/732803

[4] A. Preumont, Vibration Control of Active Structures, Springer Science+Business Media, (2011).

[5] B. Basu et al., A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe, Struct Control Hlth 21 (2014) 1414-1436.

[6] C. Graczykowski, J. Holnicki-Szulc, Protecting offshore wind turbines against ship impacts by means of adaptive inflatable structures, Shock Vib 16 (2009) 335-353.

DOI: https://doi.org/10.1155/2009/725969

[7] C Graczykowski, J. Holnicki-Szulc, Crashworthiness of inflatable thin-walled structures for impact absorption, Math Probl Eng 2015 (2015) 830471.

DOI: https://doi.org/10.1155/2015/830471

[8] P. Griskevicius, D. Zeleniakiene, M. Ostrowski, J. Holnicki-Szulc, Crashworthiness simulations of roadside restraint systems, 11th Int Conf on Transport Means, 2007, pp.282-285.

[9] L. Wågström, R. Thomson, B. Pipkorn, Structural adaptivity in frontal collisions: implications on crash pulse characteristics, Int J Crashworthines 10 (2005) 371-378.

DOI: https://doi.org/10.1533/ijcr.2005.0353

[10] J. Richert, D. Coutellier, C. Götz, W. Eberle, Advanced smart airbags: The solution for real-life safety? Int J Crashworthines 12 (2007) 159-171.

DOI: https://doi.org/10.1080/13588260701433461

[11] A. Mróz, J. Holnicki-Szulc, T. Karna, Mitigation of ice loading on off-shore wind turbines: Feasibility study of a semi-active solution, Comput Struct 86 (2008) 217-226.

DOI: https://doi.org/10.1016/j.compstruc.2007.01.039

[12] J. Grzędziński, A. Mróz, Gust load reduction concept in wind turbines, Wind Energy 13 (2010) 267-274.

DOI: https://doi.org/10.1002/we.384

[13] B. Dyniewicz, R. Konowrocki, C.I. Bajer, Intelligent adaptive control of the vehicle-span/track system, Mech Syst Signal Pr 58-59 (2015) 1-14.

DOI: https://doi.org/10.1016/j.ymssp.2014.12.007

[14] D. Pisarski, Distributed control design for structures subjected to traveling loads, Math Probl Eng 2015 (2015) 1-12.

[15] D. Pisarski, C.I. Bajer, Smart suspension system for linear guideways, J Intell Robot Syst 62 (2011) 451-466.

DOI: https://doi.org/10.1007/s10846-010-9450-7

[16] A. Pręgowska, R. Konowrocki, T. Szolc, On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid, J Theor Appl Mech 51 (2013) 979-992.

[17] P. Kołakowski, K. Sekuła, A. Świercz, A concept of long-term monitoring of a railway truss bridge excited by trains, 4th European Workshop on SHM, 2008, pp.175-182.

[18] M. Rucka, K. Wilde, Neuro-wavelet damage detection technique in beam, plate and shell structures with experimental validation, J Theor Appl Mech 48 (2010) 579-604.

[19] G. Suwała, Ł. Jankowski, A model-free method for identification of mass modifications, Struct Control Hlth 19 (2012) 216-230.

DOI: https://doi.org/10.1002/stc.417

[20] J. Holnicki-Szulc, L. Knap, Adaptive crashworthiness concept, Int J Impact Eng 30 (2004) 639.

DOI: https://doi.org/10.1016/j.ijimpeng.2003.08.004

[21] M. Wiklo, J. Holnicki-Szulc, Optimal design of adaptive structures: Part II. Adaptation to impact loads, Struct Multidiscip O 37 (2009) 351-366.

DOI: https://doi.org/10.1007/s00158-008-0242-7

[22] J. Holnicki-Szulc, P. Pawłowski, M. Wikło, Design of adaptive structures under random impact conditions, in: Advances in Smart Technologies in Structural Engineering, Springer, Berlin Heidelberg, 2004, pp.45-67.

DOI: https://doi.org/10.1007/978-3-662-05615-8_3

[23] D.C. Batterbee, N.D. Sims, R. Stanway, Z. Wolejsza, Magnetorheological landing gear: 1. A design methodology, Smart Mater Struct 16 (2007) 2429-2440.

DOI: https://doi.org/10.1088/0964-1726/16/6/046

[24] A. Mróz, J. Holnicki-Szulc, J. Biczyk, Prestress Accumulation-Release (PAR) technique for damping of impact-born vibrations. Application to self-deployable structures, Math Probl Eng 2015 (2015) 720236.

DOI: https://doi.org/10.1155/2015/720236

[25] A. Mróz, A. Orłowska, J. Holnicki-Szulc, Semi-active damping of vibrations. Prestress Accumulation-Release strategy development, Shock Vib 17 (2010) 123-136.

DOI: https://doi.org/10.1155/2010/126402

[26] J.M. Bajkowski, B. Dyniewicz, C.I. Bajer, Damping properties of a beam with vacuum-packed granular damper, J Sound Vib 341 (2015) 74-85.

DOI: https://doi.org/10.1016/j.jsv.2014.12.036

[27] B. Dyniewicz, J.M. Bajkowski, C.I. Bajer, Semi-active control of a sandwich beam partially filled with magnetorheological elastomer, Mech Syst Signal Pr 60-61 (2015) 695-705.

DOI: https://doi.org/10.1016/j.ymssp.2015.01.032

[28] I.F. Lazar, S.A. Neild, D.J. Wagg, Using an inerter-based device for structural vibration suppression, Earthq Eng Struct D 43 (2014) 1129-1147.

DOI: https://doi.org/10.1002/eqe.2390

[29] P. Brzeski, T. Kapitaniak, P. Perlikowski, Novel type of tuned mass damper with inerter which enables changes of inertance, J Sound Vib 349 (2015) 56-66.

DOI: https://doi.org/10.1016/j.jsv.2015.03.035

[30] R. Faraj, J. Holnicki-Szulc, L. Knap, J. Seńko, Adaptive inertial shock-absorber, Smart Mater Struct 25 (2016) 035031.

DOI: https://doi.org/10.1088/0964-1726/25/3/035031

[31] G. Mikułowski, R. Wiszowaty, J. Holnicki-Szulc, Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber, Smart Mater Struct 22 (2013) 125011.

DOI: https://doi.org/10.1088/0964-1726/22/12/125011

[32] G. Mikułowski, R. Wiszowaty, Pneumatic adaptive absorber: mathematical modelling with experimental verification, Math Probl Eng 2016 (2016) 7074206.

DOI: https://doi.org/10.1155/2016/7074206

[33] H. Fang, M. Rais-Rohani, Z. Liu, M.F. Horstemeyer, A comparative study of metamodeling methods for multiobjective crashworthiness optimization, Comput Struct 83 (2005) 2121-2136.

DOI: https://doi.org/10.1016/j.compstruc.2005.02.025

[34] Q.P. Ha, H. Trinh, State and input simultaneous estimation for a class of nonlinear systems, Automatica 40 (2004) 1779-1785.

DOI: https://doi.org/10.1016/j.automatica.2004.05.012

[35] C. -K. Ma, C. -C. Ho, An inverse method for the estimation of input forces acting on non-linear structural systems, J Sound Vib 275 (2004) 953-971.

[36] E. Lourens, E. Reynders, G. De Roeck, G. Degrande, G. Lombaert, An augmented Kalman filter for force identification in structural dynamics, Mech Syst Signal Pr 27 (2012) 446-460.

DOI: https://doi.org/10.1016/j.ymssp.2011.09.025

[37] M.S. Allen, T.G. Carne, Delayed, multi-step inverse structural filter for robust force identification, Mech Syst Signal Pr 22 (2008) 1036-1054.

DOI: https://doi.org/10.1016/j.ymssp.2007.11.022

[38] P. Czop, K. Mendrok, T. Uhl, Application of inverse linear parametric models in the identification of rail track irregularities, Arch Appl Mech 81 (2011) 1541-1554.

DOI: https://doi.org/10.1007/s00419-010-0500-1

[39] K. Sekuła, C. Graczykowski, J. Holnicki-Szulc, On-line impact load identification, Shock Vib 20 (2013) 123-141.

DOI: https://doi.org/10.1155/2013/147908

[40] T. Uhl, The inverse identification problem and its technical application, Arch Appl Mech 77 (2007) 325-337.

DOI: https://doi.org/10.1007/s00419-006-0086-9

[41] M. Klinkov, C. -P. Fritzen, An updated comparison of the force reconstruction methods, Key Eng Mat 347 (2007) 461-466.

[42] E. Jacquelin, A. Bennani, P. Hamelin, Force reconstruction: analysis and regularization of a deconvolution problem, J Sound Vib 265 (2003) 81-107.

DOI: https://doi.org/10.1016/s0022-460x(02)01441-4

[43] H. Inoue, J.J. Harrigan, S.R. Reid, Review of inverse analysis for indirect measurement of impact force, Appl Mech Rev 54 (2001) 503-524.

DOI: https://doi.org/10.1115/1.1420194

[44] R. Adams, J.F. Doyle, Multiple force identification for complex structures, Exp Mech 42 (2002) 25-36.

[45] L. Jankowski, Off-line identification of dynamic loads, Struct Multidiscip O 37 (2009) 609-623.

[46] Q. Zhang, Ł. Jankowski, Z. Duan, Simultaneous identification of excitation time histories and parametrized structural damages, Mech Syst Signal Pr 33 (2012) 56-68.

[47] K. Mendrok, T. Uhl, Load identification using a modified modal filter technique, J Vib Control 16 (2010) 89-105.

DOI: https://doi.org/10.1177/1077546309103274

[48] J.F. Doyle, A wavelet deconvolution method for impact force identification, Exp Mech 37 (1997) 403-408.

[49] L.E. Mujica, J. Vehí, W. Staszewski, K. Worden, Impact damage detection in aircraft composites using knowledge-based reasoning, Struct Health Monit 7 (2008) 215-230.

DOI: https://doi.org/10.1177/1475921708090560

[50] Q. Zhang, Ł. Jankowski, Z. Duan, Identification of coexistent load and damage, Struct Multidiscip O 41 (2010) 243-253.

[51] N. Davendralingam, J.F. Doyle, Nonlinear Identification Problems Under Large Deflections, Exp Mech 48 (2008) 529-538.

DOI: https://doi.org/10.1007/s11340-008-9139-z

[52] J.A.C. Ambrosio, Contact and impact models for vehicle crashworthiness simulation, Int J Crashworthines 8 (2003) 73-86.

[53] C. Graczykowski, Mathematical models and numerical methods for the simulation of adaptive inflatable structures for impact absorption, Comput Struct, doi: 10. 1016/j. compstruc. 2015. 06. 017.

[54] B. Blachowski, W. Gutkowski, Graph based discrete optimization in structural dynamics, Bulletin of the Polish Academy of Sciences: Technical Sciences 62 (2014) 91–102.

DOI: https://doi.org/10.2478/bpasts-2014-0011

[55] J. Hou, Ł. Jankowski, J. Ou, An online substructure identification method for local structural health monitoring, Smart Mater Struct 22 (2013) 095017.

DOI: https://doi.org/10.1088/0964-1726/22/9/095017

[56] C.H. Kim, A.R. Mijar, J.S. Arora, Development of simplified models for design and optimization of automotive structures for crashworthiness, Struct Multidiscip O 22 (2001) 307-321.

DOI: https://doi.org/10.1007/pl00013285

[57] C.B.W. Pedersen, On Topology Design Of Frame Structures For Crashworthiness, PhD thesis, Technical University of Denmark, (2002).

[58] J.S. Arora, C.H. Kim, A.R. Mijar, Simplified models for automotive crash simulation and design optimization, 3rd World Congress of Struct Multidiscip O, 1999, pp.224-226.

[59] J.F. Milho, J.A.C. Ambrosio, M.F.O.S. Pereira, Validated multibody model for train crash analysis, Int J Crashworthines 8 (2003) 339-352.

DOI: https://doi.org/10.1533/ijcr.2003.0242

[60] M.A. Akgün, J.H. Garcelon, R.T. Haftka, Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodbury formulas, Int J Numer Meth Eng 50 (2001) 1587-1606.

DOI: https://doi.org/10.1002/nme.87

[61] U. Kirsch, Reanalysis and sensitivity reanalysis by combined approximations, Struct Multidiscip O 40 (2010) 1-15.

[62] J.T. Putresza, P. Kołakowski, Sensitivity analysis of frame structures (virtual distortion method approach), Int J Numer Meth Eng 50 (2001) 1307-1329.

DOI: https://doi.org/10.1002/1097-0207(20010228)50:6<1307::aid-nme38>3.0.co;2-q

[63] M. Mróz, Ł. Jankowski, J. Holnicki-Szulc, VDM-based identification of localized, damage induced damping, 5th European Workshop on Structural Health Monitoring, 2010, pp.988-993.

[64] J. Holnicki-Szulc, P. Kolakowski, N. Nasher, Leakage detection in water networks, J Intel Mat Syst Str 16 (2005) 207-219.

DOI: https://doi.org/10.1177/1045389x05049169