Adaptive Self-Protection against Shock and Vibration

Article Preview

Abstract:

This contribution reviews the challenges in adaptive self-protection of structures. A proper semi-active control strategy can significantly increase structural ability to absorb impact-type loads and damp the resulting vibrations. Discussed systems constitute a new class of smart structures capable of a real-time identification of loads and vibration patterns, followed by a low-cost optimum absorption of the energy by structural adaptation. Given the always surging quest for safety, such systems have a great potential for practical applications (in landing gears, road barriers, space structures, etc.). Compared to passive systems, their better performance can be attributed to the paradigm of self-adaptivity, which is ubiquitous in nature, but still sparsely applied in structural engineering. Being in the early stages of development, their ultimate success depends on a concerted effort in facing a number of challenges. This contribution discusses some of the important problems, including these of a conceptual, technological, methodological and software engineering nature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-142

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Fang, K Solanki, M. F Horstemeyer. Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization. Int J Crashworthines 10 (2005) 161-172.

DOI: 10.1533/ijcr.2005.0335

Google Scholar

[2] W.J. Witteman, R.F.C. Kriens. The necessity of an adaptive vehicle structure to optimize deceleration pulses for different crash velocities. 17th Int Technical Conf on the Enhanced Safety of Vehicles (ESV), 2001, paper no. 320.

Google Scholar

[3] G. Mikułowski, Ł. Jankowski. Adaptive Landing Gear: optimum control strategy and potential for improvement, Shock Vib 16 (2009) 175-194.

DOI: 10.1155/2009/732803

Google Scholar

[4] A. Preumont, Vibration Control of Active Structures, Springer Science+Business Media, (2011).

Google Scholar

[5] B. Basu et al., A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe, Struct Control Hlth 21 (2014) 1414-1436.

DOI: 10.1002/stc.1652

Google Scholar

[6] C. Graczykowski, J. Holnicki-Szulc, Protecting offshore wind turbines against ship impacts by means of adaptive inflatable structures, Shock Vib 16 (2009) 335-353.

DOI: 10.1155/2009/725969

Google Scholar

[7] C Graczykowski, J. Holnicki-Szulc, Crashworthiness of inflatable thin-walled structures for impact absorption, Math Probl Eng 2015 (2015) 830471.

DOI: 10.1155/2015/830471

Google Scholar

[8] P. Griskevicius, D. Zeleniakiene, M. Ostrowski, J. Holnicki-Szulc, Crashworthiness simulations of roadside restraint systems, 11th Int Conf on Transport Means, 2007, pp.282-285.

Google Scholar

[9] L. Wågström, R. Thomson, B. Pipkorn, Structural adaptivity in frontal collisions: implications on crash pulse characteristics, Int J Crashworthines 10 (2005) 371-378.

DOI: 10.1533/ijcr.2005.0353

Google Scholar

[10] J. Richert, D. Coutellier, C. Götz, W. Eberle, Advanced smart airbags: The solution for real-life safety? Int J Crashworthines 12 (2007) 159-171.

DOI: 10.1080/13588260701433461

Google Scholar

[11] A. Mróz, J. Holnicki-Szulc, T. Karna, Mitigation of ice loading on off-shore wind turbines: Feasibility study of a semi-active solution, Comput Struct 86 (2008) 217-226.

DOI: 10.1016/j.compstruc.2007.01.039

Google Scholar

[12] J. Grzędziński, A. Mróz, Gust load reduction concept in wind turbines, Wind Energy 13 (2010) 267-274.

DOI: 10.1002/we.384

Google Scholar

[13] B. Dyniewicz, R. Konowrocki, C.I. Bajer, Intelligent adaptive control of the vehicle-span/track system, Mech Syst Signal Pr 58-59 (2015) 1-14.

DOI: 10.1016/j.ymssp.2014.12.007

Google Scholar

[14] D. Pisarski, Distributed control design for structures subjected to traveling loads, Math Probl Eng 2015 (2015) 1-12.

Google Scholar

[15] D. Pisarski, C.I. Bajer, Smart suspension system for linear guideways, J Intell Robot Syst 62 (2011) 451-466.

DOI: 10.1007/s10846-010-9450-7

Google Scholar

[16] A. Pręgowska, R. Konowrocki, T. Szolc, On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid, J Theor Appl Mech 51 (2013) 979-992.

Google Scholar

[17] P. Kołakowski, K. Sekuła, A. Świercz, A concept of long-term monitoring of a railway truss bridge excited by trains, 4th European Workshop on SHM, 2008, pp.175-182.

Google Scholar

[18] M. Rucka, K. Wilde, Neuro-wavelet damage detection technique in beam, plate and shell structures with experimental validation, J Theor Appl Mech 48 (2010) 579-604.

Google Scholar

[19] G. Suwała, Ł. Jankowski, A model-free method for identification of mass modifications, Struct Control Hlth 19 (2012) 216-230.

DOI: 10.1002/stc.417

Google Scholar

[20] J. Holnicki-Szulc, L. Knap, Adaptive crashworthiness concept, Int J Impact Eng 30 (2004) 639.

DOI: 10.1016/j.ijimpeng.2003.08.004

Google Scholar

[21] M. Wiklo, J. Holnicki-Szulc, Optimal design of adaptive structures: Part II. Adaptation to impact loads, Struct Multidiscip O 37 (2009) 351-366.

DOI: 10.1007/s00158-008-0242-7

Google Scholar

[22] J. Holnicki-Szulc, P. Pawłowski, M. Wikło, Design of adaptive structures under random impact conditions, in: Advances in Smart Technologies in Structural Engineering, Springer, Berlin Heidelberg, 2004, pp.45-67.

DOI: 10.1007/978-3-662-05615-8_3

Google Scholar

[23] D.C. Batterbee, N.D. Sims, R. Stanway, Z. Wolejsza, Magnetorheological landing gear: 1. A design methodology, Smart Mater Struct 16 (2007) 2429-2440.

DOI: 10.1088/0964-1726/16/6/046

Google Scholar

[24] A. Mróz, J. Holnicki-Szulc, J. Biczyk, Prestress Accumulation-Release (PAR) technique for damping of impact-born vibrations. Application to self-deployable structures, Math Probl Eng 2015 (2015) 720236.

DOI: 10.1155/2015/720236

Google Scholar

[25] A. Mróz, A. Orłowska, J. Holnicki-Szulc, Semi-active damping of vibrations. Prestress Accumulation-Release strategy development, Shock Vib 17 (2010) 123-136.

DOI: 10.1155/2010/126402

Google Scholar

[26] J.M. Bajkowski, B. Dyniewicz, C.I. Bajer, Damping properties of a beam with vacuum-packed granular damper, J Sound Vib 341 (2015) 74-85.

DOI: 10.1016/j.jsv.2016.05.006

Google Scholar

[27] B. Dyniewicz, J.M. Bajkowski, C.I. Bajer, Semi-active control of a sandwich beam partially filled with magnetorheological elastomer, Mech Syst Signal Pr 60-61 (2015) 695-705.

DOI: 10.1016/j.ymssp.2015.01.032

Google Scholar

[28] I.F. Lazar, S.A. Neild, D.J. Wagg, Using an inerter-based device for structural vibration suppression, Earthq Eng Struct D 43 (2014) 1129-1147.

DOI: 10.1002/eqe.2390

Google Scholar

[29] P. Brzeski, T. Kapitaniak, P. Perlikowski, Novel type of tuned mass damper with inerter which enables changes of inertance, J Sound Vib 349 (2015) 56-66.

DOI: 10.1016/j.jsv.2015.03.035

Google Scholar

[30] R. Faraj, J. Holnicki-Szulc, L. Knap, J. Seńko, Adaptive inertial shock-absorber, Smart Mater Struct 25 (2016) 035031.

DOI: 10.1088/0964-1726/25/3/035031

Google Scholar

[31] G. Mikułowski, R. Wiszowaty, J. Holnicki-Szulc, Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber, Smart Mater Struct 22 (2013) 125011.

DOI: 10.1088/0964-1726/22/12/125011

Google Scholar

[32] G. Mikułowski, R. Wiszowaty, Pneumatic adaptive absorber: mathematical modelling with experimental verification, Math Probl Eng 2016 (2016) 7074206.

DOI: 10.1155/2016/7074206

Google Scholar

[33] H. Fang, M. Rais-Rohani, Z. Liu, M.F. Horstemeyer, A comparative study of metamodeling methods for multiobjective crashworthiness optimization, Comput Struct 83 (2005) 2121-2136.

DOI: 10.1016/j.compstruc.2005.02.025

Google Scholar

[34] Q.P. Ha, H. Trinh, State and input simultaneous estimation for a class of nonlinear systems, Automatica 40 (2004) 1779-1785.

DOI: 10.1016/j.automatica.2004.05.012

Google Scholar

[35] C. -K. Ma, C. -C. Ho, An inverse method for the estimation of input forces acting on non-linear structural systems, J Sound Vib 275 (2004) 953-971.

DOI: 10.1016/s0022-460x(03)00797-1

Google Scholar

[36] E. Lourens, E. Reynders, G. De Roeck, G. Degrande, G. Lombaert, An augmented Kalman filter for force identification in structural dynamics, Mech Syst Signal Pr 27 (2012) 446-460.

DOI: 10.1016/j.ymssp.2011.09.025

Google Scholar

[37] M.S. Allen, T.G. Carne, Delayed, multi-step inverse structural filter for robust force identification, Mech Syst Signal Pr 22 (2008) 1036-1054.

DOI: 10.1016/j.ymssp.2007.11.022

Google Scholar

[38] P. Czop, K. Mendrok, T. Uhl, Application of inverse linear parametric models in the identification of rail track irregularities, Arch Appl Mech 81 (2011) 1541-1554.

DOI: 10.1007/s00419-010-0500-1

Google Scholar

[39] K. Sekuła, C. Graczykowski, J. Holnicki-Szulc, On-line impact load identification, Shock Vib 20 (2013) 123-141.

DOI: 10.1155/2013/147908

Google Scholar

[40] T. Uhl, The inverse identification problem and its technical application, Arch Appl Mech 77 (2007) 325-337.

DOI: 10.1007/s00419-006-0086-9

Google Scholar

[41] M. Klinkov, C. -P. Fritzen, An updated comparison of the force reconstruction methods, Key Eng Mat 347 (2007) 461-466.

DOI: 10.4028/www.scientific.net/kem.347.461

Google Scholar

[42] E. Jacquelin, A. Bennani, P. Hamelin, Force reconstruction: analysis and regularization of a deconvolution problem, J Sound Vib 265 (2003) 81-107.

DOI: 10.1016/s0022-460x(02)01441-4

Google Scholar

[43] H. Inoue, J.J. Harrigan, S.R. Reid, Review of inverse analysis for indirect measurement of impact force, Appl Mech Rev 54 (2001) 503-524.

DOI: 10.1115/1.1420194

Google Scholar

[44] R. Adams, J.F. Doyle, Multiple force identification for complex structures, Exp Mech 42 (2002) 25-36.

Google Scholar

[45] L. Jankowski, Off-line identification of dynamic loads, Struct Multidiscip O 37 (2009) 609-623.

Google Scholar

[46] Q. Zhang, Ł. Jankowski, Z. Duan, Simultaneous identification of excitation time histories and parametrized structural damages, Mech Syst Signal Pr 33 (2012) 56-68.

DOI: 10.1016/j.ymssp.2012.06.018

Google Scholar

[47] K. Mendrok, T. Uhl, Load identification using a modified modal filter technique, J Vib Control 16 (2010) 89-105.

DOI: 10.1177/1077546309103274

Google Scholar

[48] J.F. Doyle, A wavelet deconvolution method for impact force identification, Exp Mech 37 (1997) 403-408.

Google Scholar

[49] L.E. Mujica, J. Vehí, W. Staszewski, K. Worden, Impact damage detection in aircraft composites using knowledge-based reasoning, Struct Health Monit 7 (2008) 215-230.

DOI: 10.1177/1475921708090560

Google Scholar

[50] Q. Zhang, Ł. Jankowski, Z. Duan, Identification of coexistent load and damage, Struct Multidiscip O 41 (2010) 243-253.

DOI: 10.1007/s00158-009-0421-1

Google Scholar

[51] N. Davendralingam, J.F. Doyle, Nonlinear Identification Problems Under Large Deflections, Exp Mech 48 (2008) 529-538.

DOI: 10.1007/s11340-008-9139-z

Google Scholar

[52] J.A.C. Ambrosio, Contact and impact models for vehicle crashworthiness simulation, Int J Crashworthines 8 (2003) 73-86.

Google Scholar

[53] C. Graczykowski, Mathematical models and numerical methods for the simulation of adaptive inflatable structures for impact absorption, Comput Struct, doi: 10. 1016/j. compstruc. 2015. 06. 017.

Google Scholar

[54] B. Blachowski, W. Gutkowski, Graph based discrete optimization in structural dynamics, Bulletin of the Polish Academy of Sciences: Technical Sciences 62 (2014) 91–102.

DOI: 10.2478/bpasts-2014-0011

Google Scholar

[55] J. Hou, Ł. Jankowski, J. Ou, An online substructure identification method for local structural health monitoring, Smart Mater Struct 22 (2013) 095017.

DOI: 10.1088/0964-1726/22/9/095017

Google Scholar

[56] C.H. Kim, A.R. Mijar, J.S. Arora, Development of simplified models for design and optimization of automotive structures for crashworthiness, Struct Multidiscip O 22 (2001) 307-321.

DOI: 10.1007/pl00013285

Google Scholar

[57] C.B.W. Pedersen, On Topology Design Of Frame Structures For Crashworthiness, PhD thesis, Technical University of Denmark, (2002).

Google Scholar

[58] J.S. Arora, C.H. Kim, A.R. Mijar, Simplified models for automotive crash simulation and design optimization, 3rd World Congress of Struct Multidiscip O, 1999, pp.224-226.

Google Scholar

[59] J.F. Milho, J.A.C. Ambrosio, M.F.O.S. Pereira, Validated multibody model for train crash analysis, Int J Crashworthines 8 (2003) 339-352.

Google Scholar

[60] M.A. Akgün, J.H. Garcelon, R.T. Haftka, Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodbury formulas, Int J Numer Meth Eng 50 (2001) 1587-1606.

DOI: 10.1002/nme.87

Google Scholar

[61] U. Kirsch, Reanalysis and sensitivity reanalysis by combined approximations, Struct Multidiscip O 40 (2010) 1-15.

DOI: 10.1007/s00158-009-0369-1

Google Scholar

[62] J.T. Putresza, P. Kołakowski, Sensitivity analysis of frame structures (virtual distortion method approach), Int J Numer Meth Eng 50 (2001) 1307-1329.

DOI: 10.1002/1097-0207(20010228)50:6<1307::aid-nme38>3.0.co;2-q

Google Scholar

[63] M. Mróz, Ł. Jankowski, J. Holnicki-Szulc, VDM-based identification of localized, damage induced damping, 5th European Workshop on Structural Health Monitoring, 2010, pp.988-993.

Google Scholar

[64] J. Holnicki-Szulc, P. Kolakowski, N. Nasher, Leakage detection in water networks, J Intel Mat Syst Str 16 (2005) 207-219.

DOI: 10.1177/1045389x05049169

Google Scholar